AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (68)
  • Unit 2: Exponential and Logarithmic Functions (55)
  • Unit 3: Trigonometric and Polar Functions (56)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (71)
Unit 1: Polynomial and Rational Functions

Absolute Extrema and Local Extrema of a Polynomial

Consider the polynomial function $$p(x)= (x-3)^2*(x+3)$$.

Medium

Analysis of a Rational Function with Factorable Denominator

A function is given by $$f(x)=\frac{x^2-5*x+6}{x^2-4}$$. Examine its domain and discontinuities.

Medium

Analysis of Removable Discontinuities in an Experiment

In a chemical reaction process, the rate of reaction is modeled by $$R(x)=\frac{x^2-4}{x-2}$$ for $$

Easy

Analyzing a Rational Function with Asymptotes

Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow

Medium

Analyzing End Behavior of a Polynomial

Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.

Easy

Application of the Binomial Theorem

Expand the expression $$(x+3)^5$$ using the Binomial Theorem and answer the following parts.

Easy

Average Rate of Change and Tangent Lines

For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average

Medium

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Average Rate of Change in Rational Functions

Let $$h(x)= \frac{3}{x-1}$$ represent the speed (in km/h) of a vehicle as a function of a variable x

Medium

Carrying Capacity in Population Models

A rational function $$P(t) = \frac{50*t}{t + 10}$$ is used to model a population approaching its car

Easy

Characterizing End Behavior and Asymptotes

A rational function modeling a population is given by $$R(x)=\frac{3*x^2+2*x-1}{x^2-4}$$. Analyze th

Medium

Complex Zeros and Conjugate Pairs

Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.

Hard

Composite Function Analysis with Rational and Polynomial Functions

Consider the functions $$f(x)= \frac{x+2}{x-1}$$ and $$g(x)= x^2 - 3*x + 4$$. Let the composite func

Hard

Composite Function Transformations

Consider the polynomial function $$f(x)= x^2-4$$. A new function is defined by $$g(x)= \ln(|f(x)+5|)

Hard

Composite Functions and Inverses

Let $$f(x)= 3*(x-2)^2+1$$.

Medium

Constructing a Rational Function from Graph Behavior

An unknown rational function has a graph with a vertical asymptote at $$x=3$$, a horizontal asymptot

Hard

Construction of a Polynomial Model

A company’s quarterly profit (in thousands of dollars) over five quarters is given in the table belo

Medium

Cubic Function Inverse Analysis

Consider the cubic function $$f(x) = x^3 - 6*x^2 + 9*x$$. Answer the following questions related to

Medium

Cubic Polynomial Analysis

Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as

Medium

Data Analysis with Polynomial Interpolation

A scientist measures the decay of a radioactive substance at different times. The following table sh

Hard

Degree Determination from Finite Differences

A researcher records the size of a bacterial colony at equal time intervals, obtaining the following

Easy

Designing a Piecewise Function for a Temperature Model

A city experiences distinct temperature patterns during the day. A proposed model is as follows: for

Hard

Determining the Degree of a Polynomial from Data

A table of values is given below for a function $$f(x)$$ measured at equally spaced x-values: | x |

Easy

Discontinuities in a Rational Model Function

Consider the function $$p(x)=\frac{(x-3)(x+1)}{x-3}$$, defined for all $$x$$ except when $$x=3$$. Ad

Easy

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Examining End Behavior of Polynomial Functions

Consider the polynomial function $$f(x)= -3*x^4 + 2*x^3 - x + 7$$. Answer the following parts.

Easy

Expansion Using the Binomial Theorem in Forecasting

In a business forecast, the expression $$(x + 5)^4$$ is used to model compound factors affecting rev

Easy

Exploring Asymptotic Behavior in a Sales Projection Model

A sales projection model is given by $$P(x)=\frac{4*x-2}{x-1}$$, where $$x$$ represents time in year

Hard

Exponential Equations and Logarithm Applications in Decay Models

A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze

Easy

Factoring and Dividing Polynomial Functions

Engineers are analyzing the stress on a structural beam, modeled by the polynomial function $$P(x)=

Hard

Graph Interpretation and Log Transformation

An experiment records the reaction time R (in seconds) of an enzyme as a power function of substrate

Medium

Inverse Analysis Involving Multiple Transformations

Consider the function $$f(x)= 5 - 2*(x+3)^2$$. Answer the following questions regarding its inverse

Medium

Inverse Analysis of a Quartic Polynomial Function

Consider the quartic function $$f(x)= (x-1)^4 + 2$$. Answer the following questions concerning its i

Hard

Inverse Analysis of a Shifted Cubic Function

Consider the function $$f(x)= (x-1)^3 + 4$$. Answer the following questions regarding its inverse.

Easy

Investigation of Refund Policy via Piecewise Continuous Functions

A retail store's refund policy is modeled by $$ R(x)=\begin{cases} 10-x & \text{for } x<5, \\ a*x+b

Easy

Loan Payment Model using Rational Functions

A bank uses the rational function $$R(x) = \frac{2*x^2 - 3*x - 5}{x - 2}$$ to model the monthly inte

Hard

Logarithmic Linearization in Exponential Growth

An ecologist is studying the growth of a bacterial population in a laboratory experiment. The popula

Easy

Manufacturing Efficiency Polynomial Model

A company's manufacturing efficiency is modeled by a polynomial function. The function, given by $$P

Medium

Modeling Inverse Variation: A Rational Approach

A variable $$y$$ is inversely proportional to $$x$$. Data indicates that when $$x=4$$, $$y=2$$, and

Easy

Modeling Population Growth with a Polynomial Function

A population of a certain species in a controlled habitat is modeled by the cubic function $$P(t)= -

Medium

Modeling Vibration Data with a Cubic Function

A sensor records vibration data over time, and the data appears to be modeled by a cubic function of

Hard

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Office Space Cubic Function Optimization

An office building’s usable volume (in thousands of cubic feet) is modeled by the cubic function $$V

Hard

Parameter Identification in a Rational Function Model

A rational function modeling a certain phenomenon is given by $$r(x)= \frac{k*(x - 2)}{x+3}$$, where

Easy

Piecewise Function Analysis

Consider the piecewise function defined by $$ f(x) = \begin{cases} x^2 - 1, & x < 2 \\ 3*

Medium

Piecewise Function and Domain Restrictions

A temperature function is defined as $$ T(x)=\begin{cases} \frac{x^2-25}{x-5} & x<5, \\ 3*x-10 & x\g

Medium

Piecewise Polynomial and Rational Function Analysis

A traffic flow model is described by the piecewise function $$f(t)= \begin{cases} a*t^2+b*t+c & \tex

Hard

Polynomial Long Division and Slant Asymptote

Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p

Hard

Polynomial Long Division and Slant Asymptote

Consider the rational function $$R(x)= \frac{2*x^3 - 3*x^2 + 4*x - 5}{x^2 - 1}$$. Answer the followi

Hard

Population Growth Modeling with a Polynomial Function

A regional population (in thousands) is modeled by a polynomial function $$P(t)$$, where $$t$$ repre

Medium

Product Revenue Rational Model

A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f

Medium

Rational Function Analysis for Signal Processing

A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -

Medium

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Rational Inequalities Analysis

Solve the inequality $$\frac{x^2-4}{x+1} \ge 0$$ and represent the solution on a number line.

Medium

Rational Inequalities and Test Intervals

Solve the inequality $$\frac{x-3}{(x+2)(x-1)} < 0$$. Answer the following parts.

Medium

Real-World Inverse Function: Modeling a Reaction Process

The function $$f(x)=\frac{50}{x+2}+3$$ models the average concentration (in moles per liter) of a su

Medium

Revenue Function Transformations

A company models its revenue with a polynomial function $$f(x)$$. It is known that $$f(x)$$ has x-in

Medium

Signal Strength Transformation Analysis

A satellite's signal strength is modeled by the function $$S(x) = 20*\sin(x)$$. A transformation is

Easy

Slant Asymptote Determination for a Rational Function

Determine the slant (oblique) asymptote of the rational function $$r(x)= \frac{2*x^2 + 3*x - 5}{x -

Medium

Solving a Logarithmic Equation with Polynomial Bases

Consider the equation $$\log_2(p(x)) = x + 1$$ where $$p(x)= x^2+2*x+1$$.

Easy

Solving Polynomial Inequalities

Consider the polynomial $$p(x)= x^3 - 5*x^2 + 6*x$$. Answer the following parts.

Medium

Temperature Rate of Change Analysis

In a manufacturing process, the temperature in a reactor is recorded over time. Using the table prov

Medium

Transformation and Reflection of a Parent Function

Given the parent function $$f(x)= x^2$$, consider the transformed function $$g(x)= -3*(x+2)^2 + 5$$.

Easy

Use of Logarithms to Solve for Exponents in a Compound Interest Equation

An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub

Easy

Using the Binomial Theorem for Polynomial Expansion

A scientist is studying the expansion of the polynomial expression $$ (1+2*x)^5$$, which is related

Easy

Zero Finding and Sign Charts

Consider the function $$p(x)= (x-2)(x+1)(x-5)$$.

Easy

Zeros and Complex Conjugates in Polynomial Functions

A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r

Easy

Zeros and End Behavior in a Higher-Degree Polynomial

Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.

Easy
Unit 2: Exponential and Logarithmic Functions

Analyzing a Logarithmic Function from Data

A scientist proposes a logarithmic model for a process given by $$f(x)= \log_2(x) + 1$$. The observe

Medium

Analyzing Exponential Function Behavior from a Graph

An exponential function is depicted in the graph provided. Analyze the key features of the function.

Easy

Arithmetic Sequence Analysis

An arithmetic sequence is defined as an ordered list of numbers with a constant difference between c

Easy

Arithmetic Sequence Analysis

Consider an arithmetic sequence with initial term $$a_0 = 5$$ and constant difference $$d$$. Given t

Easy

Bacterial Population Growth Model

A certain bacterium population doubles every 3 hours. At time $$t = 0$$ hours the population is $$50

Medium

Cellular Data Usage Trend

A telecommunications company records monthly cellular data usage (in MB) that appears to grow expone

Medium

Comparing Linear and Exponential Growth Models

A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P

Medium

Comparing Linear and Exponential Revenue Models

A company is forecasting its revenue growth using two models based on different assumptions. Initial

Medium

Composite Exponential-Logarithmic Functions

Let f(x) = log₃(x) and g(x) = 2·3ˣ. Analyze the following compositions.

Medium

Composite Function and Its Inverse

Let \(f(x)=3\cdot2^{x}\) and \(g(x)=x-1\). Consider the composite function \(h(x)=f(g(x))\). (a) Wr

Medium

Composite Function Involving Exponential and Logarithmic Components

Consider the composite function defined by $$h(x) = \log_5(2\cdot 5^x + 3)$$. Answer the following p

Extreme

Composition and Transformation Functions

Let $$g(x)= \log_{5}(x)$$ and $$h(x)= 5^x - 4$$.

Hard

Composition of Exponential and Logarithmic Functions

Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.

Easy

Composition of Exponential and Logarithmic Functions

Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th

Medium

Compound Interest and Continuous Growth

A bank account grows continuously according to the formula $$A(t) = P\cdot e^{rt}$$, where $$P$$ is

Easy

Compound Interest with Periodic Deposits

An investor opens an account with an initial deposit of $$5000$$ dollars and adds an additional $$50

Medium

Connecting Exponential Functions with Geometric Sequences

An exponential function $$f(x) = 5 \cdot 3^x$$ can also be interpreted as a geometric sequence where

Medium

Data Modeling: Exponential vs. Linear Models

A scientist collected data on the growth of a substance over time. The table below shows the measure

Medium

Domain Restrictions in Logarithmic Functions

Consider the logarithmic function $$f(x) = \log_4(x^2 - 9)$$.

Hard

Earthquake Intensity on the Richter Scale

The Richter scale defines earthquake magnitude as \(M = \log_{10}(I/I_{0})\), where \(I/I_{0}\) is t

Medium

Earthquake Magnitude and Energy Release

Earthquake energy is modeled by the equation $$E = k\cdot 10^{1.5M}$$, where $$E$$ is the energy rel

Medium

Earthquake Magnitude and Logarithms

The Richter scale is logarithmic and is used to measure earthquake intensity. The energy released, \

Hard

Environmental Pollution Decay

The concentration of a pollutant in a lake decays exponentially due to natural processes. The concen

Medium

Experimental Data Modeling Using Semi-Log Plots

A set of experimental data regarding chemical concentration is given in the table below. The concent

Medium

Exploring the Properties of Exponential Functions

Analyze the exponential function $$f(x)= 4 * 2^x$$.

Easy

Exponential Growth in a Bacterial Culture

A bacterial culture grows according to the model $$P(t) = P₀ · 2^(t/3)$$, where t (in hours) is the

Medium

Finding Terms in a Geometric Sequence

A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.

Easy

Graphical Analysis of Inverse Functions

Given the exponential function f(x) = 2ˣ + 3, analyze its inverse function.

Medium

Inverse Functions in Exponential Contexts

Consider the function $$f(x)= 5^x + 3$$. Analyze its inverse function.

Medium

Inverse Functions of Exponential and Log Functions

Let \(f(x)=4\cdot3^{x}\) and \(g(x)=\log_{3}(x/4)\). (a) Show that \(f(g(x))=x\) for all \(x\) in t

Easy

Inverse of a Composite Function

Let $$f(x)= e^x$$ and $$g(x)= \ln(x) + 3$$.

Hard

Inverse of an Exponential Function

Let f(x) = 5·e^(2*x) - 3. Find the inverse function f⁻¹(x) and verify your answer by composing f and

Easy

Inverse of an Exponential Function

Given the exponential function $$f(x) = 5 \cdot 2^x$$, determine its inverse.

Easy

Logarithmic Function and Inversion

Given the function $$f(x)= \log_3(x-2)+4$$, perform an analysis to determine its domain, prove it is

Medium

Logarithmic Function and Properties

Consider the logarithmic function $$g(x) = \log_3(x)$$ and analyze its properties.

Medium

Logarithmic Function with Scaling and Inverse

Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver

Easy

Logarithmic Transformation and Composition of Functions

Let $$f(x)= \log_3(x)$$ and $$g(x)= 2^x$$. Using these functions, answer the following:

Hard

Natural Logarithms in Continuous Growth

A population grows continuously according to the function $$P(t) = P_0e^{kt}$$. At \(t = 0\), \(P(0)

Medium

pH and Logarithmic Functions

The pH of a solution is defined by $$pH = -\log_{10}[H^+]$$, where $$[H^+]$$ represents the hydrogen

Medium

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Piecewise Exponential-Log Function in Light Intensity Modeling

A scientist models the intensity of light as a function of distance using a piecewise function: $$

Hard

Profit Growth with Combined Models

A company's profit is modeled by a function that combines an arithmetic increase with exponential gr

Hard

Radioactive Decay and Exponential Functions

A sample of a radioactive substance is monitored over time. The decay in mass is recorded in the tab

Medium

Radioactive Decay and Half-Life Estimation Through Data

A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow

Easy

Radioactive Decay Model

A radioactive substance decays according to the function $$f(t)= a \cdot e^{-kt}$$. In an experiment

Hard

Radioactive Decay Problem

A radioactive substance decays exponentially with a half-life of 5 years and an initial mass of $$20

Easy

Real Estate Price Appreciation

A real estate property appreciates according to an exponential model and receives an additional fixe

Hard

Savings Account Growth: Arithmetic vs Geometric Sequences

An individual opens a savings account that incorporates both regular deposits and interest earnings.

Hard

Semi-Log Plot and Exponential Model

A researcher studies the concentration of a chemical over time using a semi-log plot, where the y-ax

Extreme

Semi-Log Plot Data Analysis

A set of experimental data representing bacterial concentration (in CFU/mL) over time (in days) is g

Medium

Shifted Exponential Function Analysis

Consider the exponential function $$f(x) = 4e^x$$. A transformed function is defined by $$g(x) = 4e^

Medium

Telephone Call Data Analysis on Semi-Log Plot

A telecommunications company records the number of calls received each hour. The data suggest an exp

Medium

Transformation of Exponential Functions

Consider the exponential function $$f(x)= 3 * 5^x$$. A new function $$g(x)$$ is defined by applying

Medium

Transformed Exponential Equation

Solve the exponential equation $$5 \cdot (1.2)^{(x-3)} = 20$$.

Medium

Validating the Negative Exponent Property

Demonstrate the negative exponent property using the expression $$b^{-3}$$.

Easy
Unit 3: Trigonometric and Polar Functions

Analysis of a Rose Curve

Examine the polar equation $$r=3*\sin(3\theta)$$.

Hard

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Analyzing Sinusoidal Function Rate of Change

A sound wave is modeled by the function $$f(t)=4*\sin(\frac{\pi}{2}*(t-1))+5$$, where t is measured

Hard

Analyzing the Tangent Function

Consider the tangent function $$T(x)=\tan(x)$$.

Easy

Average Rate of Change in a Polar Function

Given the polar function $$r(\theta) = 5*\sin(2*\theta) + 7$$ over the interval $$\theta \in [0, \fr

Medium

Calculating the Area Enclosed by a Polar Curve

Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry

Hard

Combining Logarithmic and Trigonometric Equations

Consider a model where the amplitude of a cosine function is modulated by an exponential decay. The

Hard

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Conversion Between Rectangular and Polar Coordinates

Convert the given points between rectangular and polar coordinate systems and discuss the relationsh

Easy

Converting and Graphing Polar Equations

Consider the polar equation $$r=2*\cos(\theta)$$.

Medium

Coordinate Conversion

Convert the point $$(-\sqrt{3}, 1)$$ from rectangular coordinates to polar coordinates, and then con

Medium

Coterminal Angles and Unit Circle Analysis

Identify coterminal angles and determine the corresponding coordinates on the unit circle.

Easy

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Equivalent Representations Using Pythagorean Identity

Using trigonometric identities, answer the following:

Medium

Evaluating Inverse Trigonometric Functions

Inverse trigonometric functions such as $$\arcsin(x)$$ and $$\arccos(x)$$ have specific restricted d

Easy

Evaluating Sine and Cosine Using Special Triangles

Using knowledge of special right triangles, evaluate trigonometric functions.

Easy

Evaluating Sine and Cosine Values Using Special Triangles

Using the properties of special triangles, answer the following:

Easy

Exploring a Limacon

Consider the polar equation $$r=2+3\,\cos(\theta)$$.

Hard

Exploring Inverse Trigonometric Functions

Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).

Easy

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Exploring the Pythagorean Identity

The Pythagorean identity $$\sin^2(θ)+\cos^2(θ)=1$$ is fundamental in trigonometry. Use this identity

Easy

Graph Interpretation from Tabulated Periodic Data

A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin

Medium

Graphical Reflection of Trigonometric Functions and Their Inverses

Consider the sine function and its inverse. The graph of an inverse function is the reflection of th

Easy

Graphing and Transforming a Function and Its Inverse

Examine the function $$f(x)=\cos(x)$$ defined on the interval $$[0,\pi]$$ and its inverse.

Medium

Graphing the Tangent Function and Analyzing Asymptotes

Consider the function $$y = \tan(x)$$. Answer the following:

Medium

Graphing the Tangent Function with Asymptotes

Consider the transformed tangent function $$g(\theta)=\tan(\theta-\frac{\pi}{4})$$.

Hard

Inverse Function Analysis

Given the function $$f(\theta)=2*\sin(\theta)+1$$, analyze its invertibility and determine its inver

Easy

Inverse Tangent Composition and Domain

Consider the composite function $$f(x) = \arctan(\tan(x))$$.

Extreme

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x)=\sin(x)$$ defined on the interval $$\left[-\frac{\pi}{2},\frac{\pi}{2}\

Easy

Limacon Analysis

Investigate the polar function $$r = 3 + 2*\cos(\theta)$$.

Medium

Limacons and Cardioids

Consider the polar function $$r=1+2*\cos(\theta)$$.

Hard

Modeling Daylight Hours with a Sinusoidal Function

A study in a northern city recorded the number of daylight hours over the course of one year. The ob

Medium

Modeling Daylight Variation

A coastal city records its daylight hours over the year. A sinusoidal model of the form $$D(t)=A*\si

Medium

Modeling Tidal Heights with Periodic Data

An oceanographer records tidal heights (in meters) over a 6-hour period. The following table gives t

Hard

Modeling Tidal Patterns with Sinusoidal Functions

A coastal scientist studies tide levels at a beach that vary periodically. Using collected tide data

Medium

Periodic Temperature Variation Model

A town's temperature is modeled by the function $$T(t)=10*\cos(\frac{\pi}{12}*(t-6))+20$$, where t r

Easy

Phase Shift and Frequency Analysis

Analyze the function $$f(x)=\cos\Bigl(4\bigl(x-\frac{\pi}{8}\bigr)\Bigr)$$.

Medium

Phase Shifts and Reflections of Sine Functions

Analyze the relationship between the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\thet

Easy

Polar to Cartesian Conversion for a Circle

Consider the polar equation $$r=6\cos(\theta)$$.

Medium

Proof and Application of Trigonometric Sum Identities

Trigonometric sum identities are a powerful tool in analyzing periodic phenomena.

Extreme

Reciprocal Trigonometric Functions

Consider the function $$f(x)=\sec(x)=\frac{1}{\cos(x)}\).

Medium

Reciprocal Trigonometric Functions: Secant, Cosecant, and Cotangent

Consider the functions $$f(\theta)=\sec(\theta)$$, $$g(\theta)=\csc(\theta)$$, and $$h(\theta)=\cot(

Extreme

Rewriting and Graphing a Composite Trigonometric Function

Given the function $$f(x)=\cos(x)+\sin(x)$$, transform it into the form $$R*\cos(x-\phi)$$.

Hard

Seasonal Temperature Modeling

A city's average temperature over the year is modeled by a cosine function. The following table show

Easy

Sinusoidal Data Analysis

An experimental setup records data that follows a sinusoidal pattern. The table below gives the disp

Medium

Sinusoidal Function and Its Inverse

Consider the function $$f(x)=2*\sin(x)+1$$ defined on the restricted domain $$\left[-\frac{\pi}{2},\

Medium

Sinusoidal Function Transformation Analysis

Analyze the sinusoidal function given by $$g(\theta)=3*\sin\left(2*(\theta-\frac{\pi}{4})\right)-1$$

Medium

Solving a Basic Trigonometric Equation

Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.

Easy

Solving a System Involving Exponential and Trigonometric Functions

Consider the system of equations: $$ \begin{aligned} f(x)&=e^{-x}+\sin(x)=1, \\ g(x)&=\ln(2-x)+\co

Extreme

Solving Trigonometric Equations

Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.

Hard

Special Triangles and Unit Circle Coordinates

Consider the actual geometric constructions of the special triangles used within the unit circle, sp

Easy

Transformations of Sinusoidal Functions

Consider the function $$y = 3*\sin(2*(x - \pi/4)) - 1$$. Answer the following:

Medium

Trigonometric Inequality Solution

Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.

Easy

Understanding Coterminal Angles Through Art Installation

An artist designing a circular mural plans to use repeating motifs based on angles. Answer the follo

Easy

Verifying a Trigonometric Identity

Demonstrate that the identity $$\sin^2(x)+\cos^2(x)=1$$ holds for all real numbers \(x\).

Easy
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Advanced Matrix Modeling in Economic Transitions

An economic model is represented by a 3×3 transition matrix $$M=\begin{pmatrix}0.5 & 0.2 & 0.3\\0.1

Extreme

Analysis of a Function with Trigonometric Components and Discontinuities

Examine the function $$f(\theta)=\begin{cases} \frac{1-\cos(\theta)}{\theta} & \text{if } \theta \ne

Medium

Analysis of a Particle's Parametric Path

A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$

Medium

Analysis of a Vector-Valued Position Function

Consider the vector-valued function $$\mathbf{p}(t) = \langle 2*t + 1, 3*t - 2 \rangle$$ representin

Easy

Analysis of Vector Directions and Transformations

Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform

Hard

Area of a Parallelogram Using Determinants

Given the vectors $$u=\langle 3, 5 \rangle$$ and $$v=\langle -2, 4 \rangle$$: (a) Write the 2×2 mat

Easy

Average Rate of Change in Parametric Motion

A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$

Medium

Composite Transformations in the Plane

Consider two linear transformations in $$\mathbb{R}^2$$: a rotation by 90° counterclockwise and a re

Easy

Composition of Linear Transformations

Consider two linear transformations represented by the matrices $$A= \begin{pmatrix} 1 & 2 \\ 0 & 1

Medium

Composition of Linear Transformations

Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &

Hard

Computing Average Rate of Change in Parametric Functions

Consider a particle moving with its position given by $$x(t)=t^2 - 4*t + 3$$ and $$y(t)=2*t + 1$$. A

Medium

Converting an Explicit Function to Parametric Form

The function $$f(x)=x^3-3*x+2$$ is given explicitly. One way to parametrize this function is by lett

Easy

Discontinuity Analysis in a Function Modeling Particle Motion

A particle’s position along a line is given by the piecewise function: $$s(t)=\begin{cases} \frac{t^

Medium

Discontinuity Analysis in an Implicitly Defined Function

Consider the circle defined by $$x^2+y^2=4$$. A piecewise function for $$y$$ is attempted as $$y(x)=

Medium

Eliminating the Parameter in an Implicit Function

A curve is defined by the parametric equations $$x(t)=t+1$$ and $$y(t)=t^2-1$$.

Medium

Exponential Decay Modeled by Matrices

Consider a system where decay over time is modeled by the matrix $$M(t)= e^{-k*t}I$$, where I is the

Medium

Ferris Wheel Motion

A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe

Medium

FRQ 1: Parametric Path and Motion Analysis

Consider the parametric function $$f(t)=(x(t),y(t))$$ defined by $$x(t)=t^2-4*t+3$$ and $$y(t)=2*t-1

Medium

FRQ 3: Linear Parametric Motion - Car Journey

A car travels along a linear path described by the parametric equations $$x(t)=3+2*t$$ and $$y(t)=4-

Easy

FRQ 9: Vectors in Motion and Velocity

A particle's position is described by the vector-valued function $$p(t)=\langle2*t-1, t^2+1\rangle$$

Medium

FRQ 10: Unit Vectors and Direction

Consider the vector $$\textbf{w}=\langle -5, 12 \rangle$$.

Easy

FRQ 13: Area Determined by a Matrix's Determinant

Vectors $$\textbf{v}=\langle4,3\rangle$$ and $$\textbf{w}=\langle-2,5\rangle$$ form a parallelogram.

Medium

FRQ 14: Linear Transformation and Rotation Matrix

Consider the rotation matrix $$R=\begin{bmatrix}\cos(t) & -\sin(t)\\ \sin(t) & \cos(t)\end{bmatrix}$

Medium

FRQ 18: Dynamic Systems and Transition Matrices

Consider a transition matrix modeling state changes given by $$M=\begin{bmatrix}0.7 & 0.3\\0.4 & 0.6

Hard

FRQ 19: Parametric Functions and Matrix Transformation

A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line

Hard

FRQ 20: Advanced Parametric and Matrix Modeling

A particle moves according to $$f(t)=(3*\cos(t)-t, 3*\sin(t)+2)$$ for time t. A transformation is ap

Extreme

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Growth Models: Exponential and Logistic Equations

Consider a population growth model of the form $$P(t)= P_{0}*e^{r*t}$$ and a logistic model given by

Medium

Implicitly Defined Circle

Consider the implicitly defined function given by $$x^2+y^2=16$$, which represents a circle.

Easy

Inverse Analysis of a Rational Function

Consider the function $$f(x)=\frac{2*x+3}{x-1}$$. Analyze the properties of this function and its in

Medium

Inverse and Determinant of a Matrix

Consider the matrix $$A=\begin{pmatrix}4 & 3 \\ 2 & 1\end{pmatrix}$$.

Easy

Inverse Matrix and Transformation of the Unit Square

Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit

Extreme

Inverse of a 2×2 Matrix

Consider the matrix $$A=\begin{bmatrix}2 & 5\\ 3 & 7\end{bmatrix}$$.

Medium

Investigating Inverse Transformations in the Plane

Consider the linear transformation defined by $$L(\mathbf{v})=\begin{pmatrix}2 & 1\\3 & 4\end{pmatri

Medium

Linear Parametric Motion Modeling

A car travels along a straight path, and its position in the plane is given by the parametric equati

Easy

Linear Transformation and its Effect on Geometric Shapes

A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \

Easy

Linear Transformation Composition

Consider two linear transformations with matrices $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Hard

Linear Transformations via Matrices

A linear transformation \(L\) in \(\mathbb{R}^2\) is defined by $$L(x,y)=(3*x- y, 2*x+4*y)$$. This t

Medium

Matrix Applications in State Transitions

In a system representing transitions between two states, the following transition matrix is used: $

Hard

Matrix Modeling in Population Dynamics

A biologist is studying a species with two age classes: juveniles and adults. The population dynamic

Extreme

Matrix Modeling of Department Transitions

A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri

Extreme

Matrix Modeling of State Transitions

In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e

Extreme

Matrix Multiplication and Properties

Let $$A=\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmat

Hard

Matrix Multiplication Exploration

Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B = \begin{pmatrix} 0 & -1 \\ 5 & 2 \

Medium

Matrix Transformation in Graphics

In computer graphics, images are often transformed using matrices. Consider the transformation matri

Hard

Matrix Transformation of a Vector

Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the

Medium

Modeling Linear Motion Using Parametric Equations

A car travels along a straight road. Its position in the plane is given by the parametric equations

Easy

Movement Analysis via Position Vectors

A particle is moving in the plane with its position given by the functions $$x(t)=2*t+1$$ and $$y(t)

Easy

Parameter Transition in a Piecewise-Defined Function

Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if

Easy

Parametric Equations and Inverses

A curve is defined parametrically by $$x(t)=t+2$$ and $$y(t)=3*t-1$$.

Medium

Parametric Equations of an Ellipse

Consider the ellipse defined by $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$. Answer the following:

Easy

Parametric Motion Analysis Using Tabulated Data

A particle moves in the plane following a parametric function. The following table represents the pa

Medium

Parametric Representation of a Hyperbola

For the hyperbola given by $$\frac{x^2}{9}-\frac{y^2}{4}=1$$:

Hard

Parametric Representation of a Line: Motion of a Car

A car travels in a straight line from point A = (2, -1) to point B = (10, 7) at a constant speed. (

Easy

Parametric Representation of a Parabola

Consider the parabola defined by $$y= 2*x^2 + 3$$. Answer the following:

Easy

Parametrically Defined Circular Motion

A particle moves along a circle of radius 2 with parametric equations $$x(t)=2*cos(t)$$ and $$y(t)=2

Easy

Parametrization of an Ellipse

Consider the ellipse defined by $$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$$. Answer the following:

Easy

Parametrizing a Parabola

A parabola is defined parametrically by $$x(t)=t$$ and $$y(t)=t^2$$.

Easy

Particle Motion Through Position and Velocity Vectors

A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang

Medium

Piecewise Function and Discontinuities

Consider the function $$f(x)=\begin{cases} \frac{x^2 - 1}{x-1} & \text{if } x \neq 1, \\ 3 & \text{i

Easy

Position and Velocity in Vector-Valued Functions

A particle’s position is defined by the vector-valued function $$\vec{p}(t)=(2*t+1)\,\mathbf{i}+(3*t

Easy

Position and Velocity Vectors

For a particle with position $$\mathbf{p}(t)=\langle2*t+1, 3*t-2\rangle$$, where $$t$$ is in seconds

Easy

Resolving Discontinuities in an Elliptical Parameterization

An ellipse is parameterized by the following equations: $$x(\theta)=\begin{cases} 5\cos(\theta) & \t

Easy

Rotation of a Force Vector

A force vector is given by \(\vec{F}= \langle 10, 5 \rangle\). This force is rotated by 30° counterc

Easy

Transition Matrix and State Changes

Consider a system with two states modeled by the transition matrix $$M = \begin{pmatrix} 0.7 & 0.2 \

Hard

Vector Addition and Scalar Multiplication

Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:

Medium

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Components and Magnitude

Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:

Easy

Vector Operations and Dot Product

Let $$\mathbf{u}=\langle 3,-1 \rangle$$ and $$\mathbf{v}=\langle -2,4 \rangle$$. Use these vectors t

Easy

Vector Operations in the Plane

Let $$\mathbf{u}=\langle3, -2\rangle$$ and $$\mathbf{v}=\langle -1, 4\rangle$$.

Medium

Vector Scalar Multiplication

Given the vector $$\mathbf{w} = \langle -2, 5 \rangle$$ and the scalar $$k = -3$$, answer the follow

Easy

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Tips from Former AP Students

FAQ

We thought you might have some questions...

Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.