AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (64)
  • Unit 2: Exponential and Logarithmic Functions (61)
  • Unit 3: Trigonometric and Polar Functions (64)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (61)
Unit 1: Polynomial and Rational Functions

Analysis of a Quartic Function

Consider the quartic function $$h(x)= x^4 - 4*x^2 + 3$$. Answer the following:

Hard

Analysis of Removable Discontinuities in an Experiment

In a chemical reaction process, the rate of reaction is modeled by $$R(x)=\frac{x^2-4}{x-2}$$ for $$

Easy

Analyzing a Rational Function with Asymptotes

Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow

Medium

Analyzing an Odd Polynomial Function

Consider the function $$p(x)= x^3 - 4*x$$. Investigate its properties by answering the following par

Easy

Analyzing Concavity in Polynomial Functions

A car’s displacement over time is modeled by the polynomial function $$f(x)= x^3 - 6*x^2 + 11*x - 6$

Medium

Analyzing End Behavior of a Polynomial

Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.

Easy

Application of the Binomial Theorem

Expand the expression $$(x+3)^5$$ using the Binomial Theorem and answer the following parts.

Easy

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Characterizing End Behavior and Asymptotes

A rational function modeling a population is given by $$R(x)=\frac{3*x^2+2*x-1}{x^2-4}$$. Analyze th

Medium

Composite Function Analysis with Rational and Polynomial Functions

Consider the functions $$f(x)= \frac{x+2}{x-1}$$ and $$g(x)= x^2 - 3*x + 4$$. Let the composite func

Hard

Constructing a Function Model from Experimental Data

An engineer collects data on the stress (in MPa) experienced by a material under various applied for

Medium

Constructing a Piecewise Function from Data

A company’s production cost function changes slopes at a production level of 100 units. The cost (in

Easy

Construction of a Polynomial Model

A company’s quarterly profit (in thousands of dollars) over five quarters is given in the table belo

Medium

Cubic Function Inverse Analysis

Consider the cubic function $$f(x) = x^3 - 6*x^2 + 9*x$$. Answer the following questions related to

Medium

Data Analysis with Polynomial Interpolation

A scientist measures the decay of a radioactive substance at different times. The following table sh

Hard

Degree Determination from Finite Differences

A researcher records the size of a bacterial colony at equal time intervals, obtaining the following

Easy

Designing a Piecewise Function for a Temperature Model

A city experiences distinct temperature patterns during the day. A proposed model is as follows: for

Hard

Determining Function Behavior from a Data Table

A function $$f(x)$$ is represented by the table below: | x | f(x) | |-----|------| | -3 | 10 |

Easy

Determining the Degree of a Polynomial via Differences

A function $$f(x)$$ is defined on equally spaced inputs and the following table gives selected value

Easy

End Behavior of a Quartic Polynomial

Consider the quartic polynomial function $$f(x) = -3*x^4 + 5*x^3 - 2*x^2 + x - 7$$. Analyze the end

Easy

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Expanding a Binomial: Application of the Binomial Theorem

Expand the expression $$ (x+2)^5 $$ using the Binomial Theorem and answer the following:

Easy

Exploring End Behavior and Leading Coefficients

Consider the function $$f(x)= -3*x^5 + 4*x^3 - x + 7$$. Answer the following:

Medium

Exploring Polynomial Function Behavior

Consider the polynomial function $$f(x)= 2*(x-1)^2*(x+2)$$, which is used to model a physical trajec

Easy

Finding and Interpreting Inflection Points

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 1$$. Answer the following parts.

Medium

Function Model Construction from Data Set

A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------

Medium

Function Simplification and Graph Analysis

Consider the function $$h(x)= \frac{x^2 - 4}{x-2}$$. Answer the following parts.

Easy

Graph Analysis and Identification of Discontinuities

A function is defined by $$r(x)=\frac{(x-1)(x+1)}{(x-1)(x+2)}$$ and is used to model a physical phen

Medium

Inverse Analysis Involving Multiple Transformations

Consider the function $$f(x)= 5 - 2*(x+3)^2$$. Answer the following questions regarding its inverse

Medium

Inverse Analysis of a Reciprocal Function

Consider the function $$f(x)= \frac{1}{x+2} + 3$$. Answer the following questions regarding its inve

Medium

Inverse Analysis of an Even Function with Domain Restriction

Consider the function $$f(x)=x^2$$ defined on the restricted domain $$x \ge 0$$. Answer the followin

Easy

Inverse of a Complex Rational Function

Consider the function $$f(x)=\frac{3*x+2}{2*x-1}$$. Answer the following questions regarding its inv

Medium

Inversion of a Polynomial Ratio Function

Consider the function $$f(x)=\frac{x^2-1}{x+2}$$. Answer the following questions regarding its inver

Hard

Investigation of Refund Policy via Piecewise Continuous Functions

A retail store's refund policy is modeled by $$ R(x)=\begin{cases} 10-x & \text{for } x<5, \\ a*x+b

Easy

Linear Function Inverse Analysis

Consider the function $$f(x) = 2*x + 3$$. Answer the following questions concerning its inverse func

Easy

Loan Payment Model using Rational Functions

A bank uses the rational function $$R(x) = \frac{2*x^2 - 3*x - 5}{x - 2}$$ to model the monthly inte

Hard

Logarithmic and Exponential Equations with Rational Functions

A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured

Extreme

Logarithmic Equation Solving in a Financial Model

An investor compares two savings accounts. Account A grows continuously according to the model $$A(t

Medium

Logarithmic Linearization in Exponential Growth

An ecologist is studying the growth of a bacterial population in a laboratory experiment. The popula

Easy

Manufacturing Efficiency Polynomial Model

A company's manufacturing efficiency is modeled by a polynomial function. The function, given by $$P

Medium

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Modeling with Rational Functions

A chemist models the concentration of a reactant over time with the rational function $$C(t)= \frac{

Medium

Optimizing Production Using a Polynomial Model

A factory's production cost (in thousands of dollars) is modeled by the function $$C(x)= 0.02*x^3 -

Hard

Piecewise Financial Growth Model

A company’s quarterly growth rate is modeled using a piecewise function. For $$0 \le x \le 4$$, the

Extreme

Piecewise Function without a Calculator

Let the function $$f(x)=\begin{cases} x^2-1 & \text{for } x<2, \\ \frac{x^2-4}{x-2} & \text{for } x\

Medium

Polynomial Division in Limit Evaluation

Consider the rational function $$R(x) = \frac{2*x^3 + 3*x^2 - x + 4}{x - 2}$$.

Hard

Polynomial End Behavior and Zeros Analysis

A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical

Medium

Polynomial Interpolation and Curve Fitting

A set of three points, $$(1, 3)$$, $$(2, 8)$$, and $$(4, 20)$$, is known to lie on a quadratic funct

Easy

Polynomial Long Division and Slant Asymptote

Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p

Hard

Product Revenue Rational Model

A company’s product revenue (in thousands of dollars) is modeled by the rational function $$R(x)= \f

Medium

Projectile Motion Analysis

A projectile is launched so that its height (in meters) as a function of time (in seconds) is given

Medium

Rational Function and Slant Asymptote Analysis

A study of speed and fuel efficiency is modeled by the function $$F(x)= \frac{3*x^2+2*x+1}{x-1}$$, w

Hard

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Revenue Function Transformations

A company models its revenue with a polynomial function $$f(x)$$. It is known that $$f(x)$$ has x-in

Medium

Roller Coaster Curve Analysis

A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^

Medium

Slant Asymptote Determination for a Rational Function

Determine the slant (oblique) asymptote of the rational function $$r(x)= \frac{2*x^2 + 3*x - 5}{x -

Medium

Solving a Logarithmic Equation with Polynomial Bases

Consider the equation $$\log_2(p(x)) = x + 1$$ where $$p(x)= x^2+2*x+1$$.

Easy

Solving a Polynomial Inequality

Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.

Medium

Transformation and Reflection of a Parent Function

Given the parent function $$f(x)= x^2$$, consider the transformed function $$g(x)= -3*(x+2)^2 + 5$$.

Easy

Transformation in Composite Functions

Let the parent function be $$f(x)= x^2$$ and consider the composite transformation given by $$g(x)=

Easy

Transformation of a Parabola

Starting with the parent function $$f(x)=x^2$$, a new function is defined by $$g(x) = -2*(x+3)^2 + 4

Easy

Trigonometric Function Analysis and Identity Verification

Consider the trigonometric function $$g(x)= 2*\tan(3*x-\frac{\pi}{4})$$, where $$x$$ is measured in

Medium

Use of Logarithms to Solve for Exponents in a Compound Interest Equation

An investment of $$1000$$ grows continuously according to the formula $$I(t)=1000*e^{r*t}$$ and doub

Easy

Zero Finding and Sign Charts

Consider the function $$p(x)= (x-2)(x+1)(x-5)$$.

Easy
Unit 2: Exponential and Logarithmic Functions

Analyzing a Logarithmic Function

Consider the logarithmic function $$f(x)= \log_{3}(x-2) + 1$$.

Medium

Analyzing Social Media Popularity with Logarithmic Growth

A social media analyst is studying the early-stage growth of a new account's followers. Initially, t

Extreme

Arithmetic Savings Plan

A person decides to save money every month, starting with an initial deposit of $$50$$ dollars, with

Easy

Arithmetic Sequence Analysis

An arithmetic sequence is defined as an ordered list of numbers with a constant difference between c

Easy

Arithmetic Sequence Derived from Logarithms

Consider the exponential function $$f(x) = 10 \cdot 2^x$$. A new dataset is formed by taking the com

Hard

Arithmetic Sequence in Savings

A student saves money every month and deposits a fixed additional amount each month, so that her sav

Easy

Bacterial Growth Model

In a laboratory experiment, a bacteria colony doubles every 3 hours. The initial count is $$500$$ ba

Medium

Bacterial Growth: Arithmetic vs Exponential Models

A laboratory study records the growth of a bacterial culture at regular one‐hour intervals. The data

Medium

Base Transformation and End Behavior

Consider the functions \(f(x)=2^{x}\) and \(g(x)=5\cdot2^{(x+3)}-7\). (a) Express the function \(f(

Medium

Comparing Linear and Exponential Growth Models

A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P

Medium

Competing Exponential Cooling Models

Two models are proposed for the cooling of an object. Model A is $$T_A(t) = T_env + 30·e^(-0.5*t)$$

Hard

Composite Functions and Their Inverses

For the functions $$f(x) = 2^x$$ and $$g(x) = \log_2(x)$$, analyze their composite functions.

Easy

Composite Functions with Exponential and Logarithmic Elements

Given the functions $$f(x)= \ln(x)$$ and $$g(x)= e^x$$, analyze their compositions.

Easy

Composition of Exponential and Log Functions

Consider the functions $$f(x)=\ln(x)$$ and $$g(x)=2*e^(x)$$.

Medium

Composition of Exponential and Logarithmic Functions

Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th

Medium

Connecting Exponential Functions with Geometric Sequences

An exponential function $$f(x) = 5 \cdot 3^x$$ can also be interpreted as a geometric sequence where

Medium

Data Modeling: Exponential vs. Linear Models

A scientist collected data on the growth of a substance over time. The table below shows the measure

Medium

Determining an Exponential Model from Data

An outbreak of a virus produced the following data: | Time (days) | Infected Count | |-------------

Medium

Domain, Range, and Inversion of Logarithmic Functions

Consider the logarithmic function \(f(x)=\log_{2}(x-3)\). (a) Determine the domain and range of \(f

Easy

Earthquake Magnitude and Logarithms

The Richter scale is logarithmic and is used to measure earthquake intensity. The energy released, \

Hard

Economic Inflation Model Analysis

An economist proposes a model for the inflation rate given by R(t) = A · ln(B*t + C) + D, where R(t)

Extreme

Environmental Pollution Decay

The concentration of a pollutant in a lake decays exponentially due to natural processes. The concen

Medium

Exponential Decay in Pollution Reduction

The concentration of a pollutant in a lake decreases exponentially according to the model $$f(t)= a\

Medium

Exponential Function Transformations

Given the exponential function f(x) = 4ˣ, describe the transformation that produces the function g(x

Easy

Exponential Function with Compound Transformations and Its Inverse

Consider the function $$f(x)=2^(x-2)+3$$. Determine its invertibility, find its inverse function, an

Easy

Exponential Growth in a Bacterial Culture

A bacterial culture grows according to the model $$P(t) = P₀ · 2^(t/3)$$, where t (in hours) is the

Medium

Exponential Inequality Solution

Solve the inequality $$5^(2*x - 1) < 3·5^(x)$$ for x.

Hard

Finding Terms in a Geometric Sequence

A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.

Easy

Geometric Investment Growth

An investor places $$1000$$ dollars into an account that grows following a geometric sequence model.

Medium

Geometric Sequence and Exponential Modeling

A geometric sequence can be viewed as an exponential function defined by a constant ratio. The table

Medium

Inverse Functions in Exponential Contexts

Consider the function $$f(x)= 5^x + 3$$. Analyze its inverse function.

Medium

Inverse Relationships in Exponential and Logarithmic Functions

Consider the functions \(f(x)=2^{(x-1)}+3\) and \(g(x)=\log_{2}(x-3)+1\). (a) Discuss under what co

Extreme

Log-Exponential Function and Its Inverse

For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in

Extreme

Log-Exponential Hybrid Function and Its Inverse

Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,

Extreme

Logarithmic Analysis of Earthquake Intensity

The magnitude of an earthquake on the Richter scale is determined using a logarithmic function. Cons

Medium

Logarithmic Cost Function in Production

A company’s cost function is given by $$C(x)= 50+ 10\log_{2}(x)$$, where $$x>0$$ represents the numb

Medium

Logarithmic Function Analysis

Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.

Medium

Logarithmic Function with Scaling and Inverse

Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver

Easy

Logarithmic Inequalities

Solve the inequality $$\log_{2}(x-1) > 3$$.

Easy

Logarithmic Transformation and Composition of Functions

Let $$f(x)= \log_3(x)$$ and $$g(x)= 2^x$$. Using these functions, answer the following:

Hard

Natural Logarithms in Continuous Growth

A population grows continuously according to the function $$P(t) = P_0e^{kt}$$. At \(t = 0\), \(P(0)

Medium

pH and Logarithmic Functions

The pH of a solution is defined by $$pH = -\log_{10}[H^+]$$, where $$[H^+]$$ represents the hydrogen

Medium

pH Measurement and Inversion

A researcher uses the function $$f(x)=-\log_{10}(x)+7$$ to measure the pH of a solution, where $$x$$

Easy

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Population Growth Inversion

A town's population grows according to the function $$f(t)=1200*(1.05)^(t)$$, where $$t$$ is the tim

Medium

Population Growth Modeling with Exponential Functions

A small town has its population recorded every 5 years, as shown in the table below: | Year | Popul

Medium

Population Growth with an Immigration Factor

A city's population is modeled by an equation that combines exponential growth with a constant linea

Hard

Radioactive Decay and Half-Life Estimation Through Data

A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow

Easy

Radioactive Decay and Logarithmic Inversion

A radioactive substance decays such that its mass halves every 8 years. At time \(t=0\), the substan

Medium

Radioactive Decay Model

A radioactive substance decays according to the function $$f(t)= a \cdot e^{-kt}$$. In an experiment

Hard

Radioactive Decay Modeling

A radioactive substance decays according to the model N(t) = N₀ · e^(-k*t), where t is measured in y

Medium

System of Exponential Equations

Solve the following system of equations: $$2\cdot 2^x + 3\cdot 3^y = 17$$ $$2^x - 3^y = 1$$.

Medium

Transformation of an Exponential Function

Consider the basic exponential function $$f(x)= 2^x$$. A transformed function is given by $$g(x)= 3\

Medium

Transformation of Exponential Functions

Consider the exponential function $$f(x)= 3 * 5^x$$. A new function $$g(x)$$ is defined by applying

Medium

Transformations in Logarithmic Functions

Given \(f(x)=\log_{3}(x)\), consider the transformed function \(g(x)=-2\log_{3}(2x-6)+4\). (a) Dete

Hard

Transformations of Exponential Functions

Consider the exponential function \(f(x)=3\cdot2^{x}\). (a) Determine the equation of the transform

Medium

Transformations of Exponential Functions

Consider the exponential function $$f(x)= 7 * e^{0.3x}$$. Investigate its transformations.

Easy

Transformed Exponential Equation

Solve the exponential equation $$5 \cdot (1.2)^{(x-3)} = 20$$.

Medium

Translated Exponential Function and Its Inverse

Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu

Easy

Tumor Growth with Time Dilation Effects

A medical researcher is studying the growth of a tumor, which is modeled by the exponential function

Extreme

Weekly Population Growth Analysis

A species exhibits exponential growth in its weekly population. If the initial population is $$2000$

Hard
Unit 3: Trigonometric and Polar Functions

Analysis of a Limacon

Consider the polar function $$r(\theta) = 2 + 3*\cos(\theta)$$.

Extreme

Analysis of Rose Curves

A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the

Medium

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Application of Trigonometric Sum Identities

Utilize trigonometric sum identities to simplify and solve expressions.

Hard

Applying Sine and Cosine Sum Identities in Modeling

A researcher uses trigonometric sum identities to simplify complex periodic data. Consider the ident

Medium

Cardioid Polar Graphs

Consider the cardioid given by the polar equation $$r=1+\cos(\theta)$$.

Medium

Comparing Sinusoidal Function Models

Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r

Medium

Composite Function Analysis with Polar and Trigonometric Elements

A radar system uses the polar function $$r(\theta)=5+2*\sin(\theta)$$ to model the distance to a tar

Medium

Conversion between Rectangular and Polar Coordinates

Given the point in rectangular coordinates $$(-3, 3\sqrt{3})$$, perform the following tasks.

Medium

Converting Complex Numbers to Polar Form

Convert the complex number $$3-3*\text{i}$$ to polar form and use this representation to compute the

Medium

Coterminal Angles and the Unit Circle

Consider the angle $$\theta = \frac{5\pi}{3}$$ given in standard position.

Medium

Coterminal Angles and Trigonometric Evaluations

Consider the angle $$750^\circ$$. Using properties of coterminal angles and the unit circle, answer

Easy

Coterminal Angles and Unit Circle Analysis

Identify coterminal angles and determine the corresponding coordinates on the unit circle.

Easy

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Determining Phase Shifts and Amplitude Changes

A wave function is modeled by $$W(\theta)=7*\cos(4*(\theta-c))+d$$, where c and d are unknown consta

Hard

Evaluating Inverse Trigonometric Functions

Inverse trigonometric functions such as $$\arcsin(x)$$ and $$\arccos(x)$$ have specific restricted d

Easy

Evaluating Sine and Cosine Values Using Special Triangles

Using the properties of special triangles, answer the following:

Easy

Exploring a Limacon

Consider the polar equation $$r=2+3\,\cos(\theta)$$.

Hard

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Extracting Sinusoidal Parameters from Data

The function $$f(x)=a\sin[b(x-c)]+d$$ models periodic data, with the following values provided: | x

Easy

Graph Transformations: Sine and Cosine Functions

The functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\cos(\theta)$$ are related through a phase

Medium

Graphing a Rose Curve

Consider the polar function $$r=4\cos(3\theta)$$ and analyze its properties.

Medium

Graphing a Transformed Sine Function

Analyze the function $$f(x)=3\,\sin\Bigl(2\bigl(x-\frac{\pi}{4}\bigr)\Bigr)-1$$ which is obtained fr

Medium

Graphing and Analyzing a Transformed Sine Function

Consider the function $$f(x)=3\sin\left(2\left(x-\frac{\pi}{4}\right)\right)+1$$. Answer the followi

Medium

Graphing Polar Circles and Roses

Analyze the following polar equations: $$r=2$$ and $$r=3*\cos(2\theta)$$.

Medium

Graphing the Tangent Function with Asymptotes

The tangent function, $$f(\theta) = \tan(\theta)$$, exhibits vertical asymptotes where it is undefin

Hard

Graphing the Tangent Function with Asymptotes

Consider the transformed tangent function $$g(\theta)=\tan(\theta-\frac{\pi}{4})$$.

Hard

Identity Verification

Verify the following trigonometric identity using the sum formula for sine: $$\sin(\alpha+\beta) = \

Easy

Interpreting a Sinusoidal Graph

The graph provided displays a function of the form $$g(\theta)=a\sin[b(\theta-c)]+d$$. Use the graph

Medium

Interpreting Trigonometric Data Models

A set of experimental data capturing a periodic phenomenon is given in the table below. Use these da

Medium

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Function Analysis

Consider the function $$f(x) = 2*\sin(x)$$.

Medium

Inverse Trigonometric Functions in Navigation

A navigation system uses inverse trigonometric functions to determine heading angles. Answer the fol

Hard

Modeling a Ferris Wheel's Motion Using Sinusoidal Functions

A Ferris wheel with a diameter of 10 meters rotates at a constant speed. The lowest point of the rid

Easy

Modeling Daylight Hours with a Sinusoidal Function

A study in a northern city recorded the number of daylight hours over the course of one year. The ob

Medium

Modeling Tidal Motion with a Sinusoidal Function

A coastal town uses the model $$h(t)=4*\sin\left(\frac{\pi}{6}*(t-2)\right)+10$$ (with $$t$$ in hour

Medium

Modeling Tidal Patterns with Sinusoidal Functions

A coastal scientist studies tide levels at a beach that vary periodically. Using collected tide data

Medium

Period Detection and Frequency Analysis

An engineer analyzes a signal modeled by $$P(t)=6*\cos(5*(t-1))$$.

Medium

Periodic Temperature Variation Model

A town's temperature is modeled by the function $$T(t)=10*\cos(\frac{\pi}{12}*(t-6))+20$$, where t r

Easy

Phase Shifts and Reflections of Sine Functions

Analyze the relationship between the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\thet

Easy

Piecewise Trigonometric Function and Continuity Analysis

Consider the piecewise defined function $$f(\theta)=\begin{cases}\frac{\sin(\theta)}{\theta} & ,\ \t

Medium

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Coordinates: Converting and Graphing

Given the rectangular coordinate point $$(3, -3\sqrt{3})$$, convert and analyze its polar representa

Medium

Polar Rose Analysis

Analyze the polar equation $$r = 2*\cos(3\theta)$$.

Medium

Polar to Cartesian Conversion for a Circle

Consider the polar equation $$r=6\cos(\theta)$$.

Medium

Probability and Trigonometry: Dartboard Game

A circular dartboard is divided into three regions by drawing two radii, forming sectors. One region

Extreme

Rate of Change in Polar Functions

Consider the polar function $$r(\theta)=3+\sin(\theta)$$.

Hard

Reciprocal Trigonometric Functions

Consider the function $$f(x)=\sec(x)=\frac{1}{\cos(x)}\).

Medium

Rose Curve in Polar Coordinates

The polar function $$r(\theta) = 4*\cos(3*\theta)$$ represents a rose curve.

Hard

Roses and Limacons in Polar Graphs

Consider the polar curves described below and answer the following:

Hard

Roulette Wheel Outcomes and Angle Analysis

A casino roulette wheel is divided into 12 equal sectors. Answer the following:

Hard

Seasonal Demand Modeling

A company's product demand follows a seasonal pattern modeled by $$D(t)=500+50\cos\left(\frac{2\pi}{

Medium

Sinusoidal Combination

Let $$f(x) = 3*\sin(x) + 2*\cos(x)$$.

Hard

Sinusoidal Data Analysis

An experimental setup records data that follows a sinusoidal pattern. The table below gives the disp

Medium

Sinusoidal Transformations

The function $$g(x) = 2*\cos(3*(x - \frac{\pi}{4})) - 1$$ is a transformed cosine wave.

Medium

Solving a Trigonometric Equation with Sum and Difference Identities

Solve the equation $$\sin\left(x+\frac{\pi}{6}\right)=\cos(x)$$ for $$0\le x<2\pi$$.

Hard

Solving Trigonometric Equations

Solve the equation $$\sin(x)+\cos(x)=1$$ for \(0\le x<2\pi\).

Medium

Special Triangles and Unit Circle Coordinates

Consider the actual geometric constructions of the special triangles used within the unit circle, sp

Easy

Tidal Patterns and Sinusoidal Modeling

A coastal engineer models tide heights (in meters) as a function of time (in hours) using the sinuso

Medium

Transformations of Inverse Trigonometric Functions

Analyze the inverse trigonometric function $$g(x)=\arccos(x)$$ and its transformation into $$h(x)=2-

Medium

Transformations of Sinusoidal Functions

Consider the function $$y = 3*\sin(2*(x - \pi/4)) - 1$$. Answer the following:

Medium

Trigonometric Identities and Sum Formulas

Trigonometric identities are important for simplifying expressions that arise in wave interference a

Easy

Verification and Application of Trigonometric Identities

Consider the sine addition identity $$\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\b

Easy

Vibration Analysis

A mechanical system oscillates with displacement given by $$d(t) = 5*\cos(4t - \frac{\pi}{3})$$ (in

Medium
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Acceleration in a Vector-Valued Function

Given the particle's position vector $$\mathbf{r}(t) = \langle t^2, t^3 - 3*t \rangle$$, answer the

Medium

Analysis of Vector Directions and Transformations

Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform

Hard

Average Rate of Change in Parametric Motion

A projectile is launched and its motion is modeled by $$x(t)=3*t+1$$ and $$y(t)=16-4*t^2$$, where $$

Medium

Circular Motion Parametrization

Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(

Medium

Complex Parametric and Matrix Analysis in Planar Motion

A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)

Extreme

Converting an Explicit Function to Parametric Form

The function $$f(x)=x^3-3*x+2$$ is given explicitly. One way to parametrize this function is by lett

Easy

Determinant and Inverse Calculation

Given the matrix $$C = \begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$, answer the following:

Easy

Discontinuity Analysis in a Function Modeling Particle Motion

A particle’s position along a line is given by the piecewise function: $$s(t)=\begin{cases} \frac{t^

Medium

Displacement and Average Velocity from a Vector-Valued Function

A particle’s position is given by the vector-valued function $$p(t)=\langle 2*t, t^2 - 4*t + 3 \ran

Medium

Dot Product, Projection, and Angle Calculation

Let $$\mathbf{u}=\langle4, 1\rangle$$ and $$\mathbf{v}=\langle2, 3\rangle$$.

Medium

Estimating a Definite Integral with a Table

The function x(t) represents the distance traveled (in meters) by an object over time, with the foll

Medium

Evaluating Limits and Discontinuities in a Parameter-Dependent Function

For the function $$g(t)=\begin{cases} \frac{2*t^2 - 8}{t-2} & \text{if } t \neq 2, \\ 6 & \text{if }

Easy

Evaluating Limits in a Parametrically Defined Motion Scenario

A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \

Medium

Exponential Parametric Function and its Inverse

Consider the exponential function $$f(x)=e^{x}+2$$ defined for all real numbers. Analyze the functio

Medium

Ferris Wheel Motion

A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe

Medium

FRQ 1: Parametric Path and Motion Analysis

Consider the parametric function $$f(t)=(x(t),y(t))$$ defined by $$x(t)=t^2-4*t+3$$ and $$y(t)=2*t-1

Medium

FRQ 6: Implicit Function to Parametric Representation

Consider the implicitly defined circle $$x^2+y^2-6*x+8*y+9=0$$.

Hard

FRQ 11: Matrix Inversion and Determinants

Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.

Medium

FRQ 12: Matrix Multiplication in Transformation

Let matrices $$A=\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}$$ and $$B=\begin{bmatrix}0 & 1\\1 & 0\end{

Hard

FRQ 18: Dynamic Systems and Transition Matrices

Consider a transition matrix modeling state changes given by $$M=\begin{bmatrix}0.7 & 0.3\\0.4 & 0.6

Hard

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Implicit Function Analysis

Consider the implicitly defined equation $$x^2 + y^2 - 4*x + 6*y - 12 = 0$$. Answer the following:

Easy

Implicitly Defined Circle

Consider the implicitly defined function given by $$x^2+y^2=16$$, which represents a circle.

Easy

Inverse Analysis of a Rational Function

Consider the function $$f(x)=\frac{2*x+3}{x-1}$$. Analyze the properties of this function and its in

Medium

Inverse Function and Transformation Mapping

Given the function $$f(x)=\frac{x+2}{3}$$, analyze its invertibility and the relationship between th

Easy

Linear Parametric Motion Modeling

A car travels along a straight path, and its position in the plane is given by the parametric equati

Easy

Linear Transformation and its Effect on Geometric Shapes

A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \

Easy

Linear Transformations in the Plane

A linear transformation $$L$$ from $$\mathbb{R}^2$$ to $$\mathbb{R}^2$$ is defined by $$L(x,y)=(2x-y

Hard

Matrices as Representations of Rotation

Consider the matrix $$A=\begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}$$, which represents a rotation in

Easy

Matrix Modeling in Population Dynamics

A biologist is studying a species with two age classes: juveniles and adults. The population dynamic

Extreme

Matrix Multiplication and Linear Transformations

Consider the matrices $$A= \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$ and $$B= \begin{pmatrix}

Medium

Matrix Representation of Linear Transformations

Consider the linear transformation defined by $$L(x,y)=(3*x-2*y, 4*x+y)$$.

Medium

Matrix Transformation in Graphics

In computer graphics, images are often transformed using matrices. Consider the transformation matri

Hard

Matrix Transformation of a Vector

Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the

Medium

Modeling Particle Trajectory with Parametric Equations

A particle’s motion is described by the parametric equations $$x(t)=3*t+1$$ and $$y(t)=-2*t^2+8*t-1$

Medium

Modified Circular Motion: Transformation Effects

Consider the parametric equations $$x(t)=2+4\cos(t)$$ and $$y(t)=-3+4\sin(t)$$ which describe a curv

Medium

Movement Analysis via Position Vectors

A particle is moving in the plane with its position given by the functions $$x(t)=2*t+1$$ and $$y(t)

Easy

Parabolic and Elliptical Parametric Representations

A parabola is given by the equation $$y=x^2-4*x+3$$.

Medium

Parametric Equations and Inverses

A curve is defined parametrically by $$x(t)=t+2$$ and $$y(t)=3*t-1$$.

Medium

Parametric Representation of a Parabola

A parabola is given by the equation $$y=x^2-2*x+1$$. A parametric representation for this parabola i

Easy

Parametric Representation of an Ellipse

An ellipse is defined by the equation $$\frac{(x-3)^2}{4} + \frac{(y+2)^2}{9} = 1.$$ (a) Write a

Easy

Parametric Representation on the Unit Circle and Special Angles

Consider the unit circle defined by the parametric equations $$x(t)=\cos(t)$$ and $$y(t)=\sin(t)$$.

Easy

Parametric Table and Graph Analysis

Consider the parametric function $$f(t)= (x(t), y(t))$$ where $$x(t)= t^2$$ and $$y(t)= 2*t$$ for $$

Easy

Parametrization of a Circle

The circle defined by $$x^2+y^2=25$$ represents all points at a distance of 5 from the origin.

Easy

Parametrization of an Ellipse

Consider the ellipse defined by $$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$$. Answer the following:

Easy

Parametrizing a Linear Path: Car Motion

A car moves along a straight line from point $$A=(1,2)$$ to point $$B=(7,8)$$.

Easy

Particle Motion Through Position and Velocity Vectors

A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang

Medium

Particle Motion with Quadratic Parametric Functions

A particle moves in the plane according to the parametric equations $$x(t)=t^2$$ and $$y(t)=2*t$$. A

Easy

Population Transition Matrix Analysis

A population dynamics model is represented by the transition matrix $$T=\begin{pmatrix}0.7 & 0.2 \\

Medium

Position and Velocity in Vector-Valued Functions

A particle’s position is defined by the vector-valued function $$\vec{p}(t)=(2*t+1)\,\mathbf{i}+(3*t

Easy

Position and Velocity Vectors

For a particle with position $$\mathbf{p}(t)=\langle2*t+1, 3*t-2\rangle$$, where $$t$$ is in seconds

Easy

Projectile Motion: Parabolic Path

A projectile is launched so that its motion is modeled by the parametric equations $$x(t)=t$$ and $

Medium

Properties of a Parametric Curve

Consider a curve defined parametrically by $$x(t)=t^3$$ and $$y(t)=t^2.$$ (a) Determine for which

Medium

Rate of Change Analysis in Parametric Motion

A particle’s movement is described by the parametric equations $$x(t)=t^3-6*t+4$$ and $$y(t)=2*t^2-t

Hard

Transformation Matrices in Computer Graphics

A transformation matrix $$A = \begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}$$ is applied to points in

Medium

Transition from Parametric to Explicit Function

A curve is defined by the parametric equations $$x(t)=\ln(t)$$ and $$y(t)=t+1$$, where $$t>0$$. Answ

Medium

Transition Matrices in Dynamic Models

A system with two states is modeled by the transition matrix $$T=\begin{bmatrix}0.8 & 0.3\\ 0.2 & 0.

Hard

Trigonometric Function Analysis

Consider the trigonometric function $$f(x)= 2*\tan(x - \frac{\pi}{6})$$. Without using a calculator,

Medium

Vector Addition and Scalar Multiplication

Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:

Medium

Vector Operations and Dot Product

Let $$\mathbf{u}=\langle 3,-1 \rangle$$ and $$\mathbf{v}=\langle -2,4 \rangle$$. Use these vectors t

Easy

Vector Operations in the Plane

Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following

Easy

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Tips from Former AP Students

FAQWe thought you might have some questions...
Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.