AP Precalculus FRQ Room

Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.

Which subject are you taking?

Knowt can make mistakes. Consider checking important information.

Pick your exam

AP Precalculus Free Response Questions

The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.

  • View all (250)
  • Unit 1: Polynomial and Rational Functions (70)
  • Unit 2: Exponential and Logarithmic Functions (59)
  • Unit 3: Trigonometric and Polar Functions (58)
  • Unit 4: Functions Involving Parameters, Vectors, and Matrices (63)
Unit 1: Polynomial and Rational Functions

Analysis of a Quartic Function

Consider the quartic function $$h(x)= x^4 - 4*x^2 + 3$$. Answer the following:

Hard

Analyzing a Rational Function with a Hole

Consider the rational function $$R(x)= \frac{x^2-4}{x^2-x-6}$$.

Medium

Analyzing a Rational Function with Asymptotes

Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow

Medium

Analyzing Concavity in Polynomial Functions

A car’s displacement over time is modeled by the polynomial function $$f(x)= x^3 - 6*x^2 + 11*x - 6$

Medium

Average Rate of Change and Tangent Lines

For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average

Medium

Average Rate of Change in a Quadratic Model

Let $$h(x)= x^2 - 4*x + 3$$ represent a model for a certain phenomenon. Calculate the average rate o

Easy

Behavior Analysis of a Rational Function with Cancelled Factors

Consider the function $$f(x)=\frac{x^2-16}{x-4}$$. Analyze the behavior of the function at the point

Easy

Complex Zeros and Conjugate Pairs

Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.

Hard

Composite Function Analysis in Environmental Modeling

Environmental data shows the concentration (in mg/L) of a pollutant over time (in hours) as given in

Hard

Composite Function Transformations

Consider the polynomial function $$f(x)= x^2-4$$. A new function is defined by $$g(x)= \ln(|f(x)+5|)

Hard

Concavity and Inflection Points of a Polynomial Function

For the function $$g(x)= x^3 - 3*x^2 - 9*x + 5$$, analyze the concavity and determine any inflection

Hard

Constructing a Piecewise Function from Data

A company’s production cost function changes slopes at a production level of 100 units. The cost (in

Easy

Construction of a Polynomial Model

A company’s quarterly profit (in thousands of dollars) over five quarters is given in the table belo

Medium

Continuous Piecewise Function Modification

A company models its profit $$P(x)$$ (in thousands of dollars) with the piecewise function: $$ P(x)=

Medium

Cubic Polynomial Analysis

Consider the cubic polynomial function $$f(x) = 2*x^3 - 3*x^2 - 12*x + 8$$. Analyze the function as

Medium

Data Analysis with Polynomial Interpolation

A scientist measures the decay of a radioactive substance at different times. The following table sh

Hard

Determining Degree from Discrete Data

Below is a table representing the output values of a polynomial function for equally-spaced input va

Medium

Determining Domain and Range of a Transformed Rational Function

Consider the function $$g(x)= \frac{x^2 - 9}{x-3}$$. Answer the following:

Medium

Determining Function Behavior from a Data Table

A function $$f(x)$$ is represented by the table below: | x | f(x) | |-----|------| | -3 | 10 |

Easy

Determining the Degree of a Polynomial from Data

A table of values is given below for a function $$f(x)$$ measured at equally spaced x-values: | x |

Easy

Determining the Degree of a Polynomial via Differences

A function $$f(x)$$ is defined on equally spaced inputs and the following table gives selected value

Easy

Discontinuities in a Rational Model Function

Consider the function $$p(x)=\frac{(x-3)(x+1)}{x-3}$$, defined for all $$x$$ except when $$x=3$$. Ad

Easy

Discontinuity Analysis in a Rational Function with High Degree

Consider the function $$f(x)=\frac{x^3-8}{x^2-4}$$. Answer the following:

Hard

Engineering Application: Stress Analysis Model

In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled

Medium

Engineering Curve Analysis: Concavity and Inflection

An engineering experiment recorded the deformation of a material, modeled by a function whose behavi

Easy

Estimating Polynomial Degree from Finite Differences

The following table shows the values of a function $$f(x)$$ at equally spaced values of $$x$$: | x

Easy

Evaluating Limits Involving Rational Expressions with Asymptotic Behavior

Consider the function $$f(x)=\frac{2*x^2-3*x-5}{x^2-1}$$. Answer the following:

Hard

Expanding a Binomial: Application of the Binomial Theorem

Expand the expression $$ (x+2)^5 $$ using the Binomial Theorem and answer the following:

Easy

Exploring Asymptotic Behavior in a Sales Projection Model

A sales projection model is given by $$P(x)=\frac{4*x-2}{x-1}$$, where $$x$$ represents time in year

Hard

Exploring Domain Restrictions via Inverse Functions in a Quadratic Model

Consider the quadratic function $$f(x)= -x^2 + 6*x - 8$$. Answer the following questions regarding i

Medium

Exploring Symmetry in Polynomial Functions

Let $$f(x)= x^4-5*x^2+4$$.

Easy

Exponential Equations and Logarithm Applications in Decay Models

A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze

Easy

Factoring and Dividing Polynomial Functions

Engineers are analyzing the stress on a structural beam, modeled by the polynomial function $$P(x)=

Hard

Finding and Interpreting Inflection Points

Consider the polynomial function $$f(x)= x^3 - 6*x^2 + 9*x + 1$$. Answer the following parts.

Medium

Function Model Construction from Data Set

A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------

Medium

Function Transformations and Parent Functions

The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An

Easy

Graph Analysis and Identification of Discontinuities

A function is defined by $$r(x)=\frac{(x-1)(x+1)}{(x-1)(x+2)}$$ and is used to model a physical phen

Medium

Graph Interpretation and Log Transformation

An experiment records the reaction time R (in seconds) of an enzyme as a power function of substrate

Medium

Graphical Analysis of Inverse Function for a Linear Transformation

Consider the function $$f(x)=4*(x+1)-5$$. Answer the following questions regarding the transformatio

Easy

Graphical Interpretation of Inverse Functions from a Data Table

A table below represents selected values of a polynomial function $$f(x)$$: | x | f(x) | |----|---

Easy

Intersection of Functions in Supply and Demand

Consider two functions that model supply and demand in a market. The supply function is given by $$f

Medium

Inverse Analysis of a Quartic Polynomial Function

Consider the quartic function $$f(x)= (x-1)^4 + 2$$. Answer the following questions concerning its i

Hard

Inverse Analysis of a Reciprocal Function

Consider the function $$f(x)= \frac{1}{x+2} + 3$$. Answer the following questions regarding its inve

Medium

Inverse Analysis of a Shifted Cubic Function

Consider the function $$f(x)= (x-1)^3 + 4$$. Answer the following questions regarding its inverse.

Easy

Logarithmic Linearization in Exponential Growth

An ecologist is studying the growth of a bacterial population in a laboratory experiment. The popula

Easy

Manufacturing Efficiency Polynomial Model

A company's manufacturing efficiency is modeled by a polynomial function. The function, given by $$P

Medium

Model Interpretation: End Behavior and Asymptotic Analysis

A chemical reaction's saturation level is modeled by the rational function $$S(t)= \frac{10*t+5}{t+3

Medium

Modeling a Real-World Scenario with a Rational Function

A biologist is studying the concentration of a nutrient in a lake. The concentration (in mg/L) is mo

Easy

Modeling Population Growth with a Polynomial Function

A population of a certain species in a controlled habitat is modeled by the cubic function $$P(t)= -

Medium

Modeling with Inverse Variation: A Rational Function

A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of

Easy

Multivariable Rational Function: Zeros and Discontinuities

A pollutant concentration is modeled by $$C(x)= \frac{(x-3)*(x+2)}{(x-3)*(x-4)}$$, where x represent

Easy

Optimizing Production Using a Polynomial Model

A factory's production cost (in thousands of dollars) is modeled by the function $$C(x)= 0.02*x^3 -

Hard

Piecewise Function Analysis

Consider the piecewise function defined by $$ f(x) = \begin{cases} x^2 - 1, & x < 2 \\ 3*

Medium

Piecewise Polynomial and Rational Function Analysis

A traffic flow model is described by the piecewise function $$f(t)= \begin{cases} a*t^2+b*t+c & \tex

Hard

Polynomial Long Division and Slant Asymptote

Consider the function $$P(x)= \frac{2*x^3 - 3*x^2 + x - 5}{x-2}$$. Answer the following parts.

Hard

Polynomial Long Division and Slant Asymptotes

Consider the rational function $$R(x)= \frac{2*x^3+3*x^2-5*x+4}{x^2-1}$$.

Hard

Rate of Change in a Quadratic Function

Consider the quadratic function $$f(x)= 2*x^2 - 4*x + 1$$. Answer the following parts regarding its

Medium

Rational Function Analysis for Signal Processing

A signal processing system is modeled by the rational function $$R(x)= \frac{2*x^2 - 3*x - 5}{x^2 -

Medium

Rational Function and Slant Asymptote Analysis

A study of speed and fuel efficiency is modeled by the function $$F(x)= \frac{3*x^2+2*x+1}{x-1}$$, w

Hard

Rational Function Graph and Asymptote Identification

Given the rational function $$R(x)= \frac{x^2 - 4}{x^2 - x - 6}$$, answer the following parts:

Hard

Rational Function Inverse Analysis

Consider the rational function $$f(x)=\frac{2*x-1}{x+3}$$. Answer the following questions regarding

Hard

Rational Function: Machine Efficiency Ratios

A machine's efficiency is modeled by the rational function $$E(x) = \frac{x^2 - 9}{x^2 - 4*x + 3}$$,

Medium

Rational Inequalities and Test Intervals

Solve the inequality $$\frac{x-3}{(x+2)(x-1)} < 0$$. Answer the following parts.

Medium

Real-World Inverse Function: Temperature Conversion

The function $$f(x)= \frac{9}{5}*x + 32$$ converts a temperature in degrees Celsius to degrees Fahre

Easy

Real-World Modeling: Population Estimation

A biologist models the population of a species over time $$t$$ (in years) with the polynomial functi

Medium

Roller Coaster Curve Analysis

A roller coaster's vertical profile is modeled by the polynomial function $$f(x)= -0.05*x^3 + 1.2*x^

Medium

Solving a Polynomial Inequality

Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.

Medium

Transformation and Reflection of a Parent Function

Given the parent function $$f(x)= x^2$$, consider the transformed function $$g(x)= -3*(x+2)^2 + 5$$.

Easy

Zero Finding and Sign Charts

Consider the function $$p(x)= (x-2)(x+1)(x-5)$$.

Easy

Zeros and Complex Conjugates in Polynomial Functions

A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r

Easy
Unit 2: Exponential and Logarithmic Functions

Analyzing a Logarithmic Function from Data

A scientist proposes a logarithmic model for a process given by $$f(x)= \log_2(x) + 1$$. The observe

Medium

Arithmetic Savings Plan

A person decides to save money every month, starting with an initial deposit of $$50$$ dollars, with

Easy

Arithmetic Sequence Analysis

Consider an arithmetic sequence with initial term $$a_0$$ and common difference $$d$$. Analyze the c

Easy

Arithmetic Sequence Derived from Logarithms

Consider the exponential function $$f(x) = 10 \cdot 2^x$$. A new dataset is formed by taking the com

Hard

Arithmetic Sequence in Savings

A student saves money every month and deposits a fixed additional amount each month, so that her sav

Easy

Cellular Data Usage Trend

A telecommunications company records monthly cellular data usage (in MB) that appears to grow expone

Medium

Composite Exponential-Logarithmic Functions

Let f(x) = log₃(x) and g(x) = 2·3ˣ. Analyze the following compositions.

Medium

Composite Function Analysis: Identity and Inverses

Let $$f(x)= 2^x$$ and $$g(x)= \log_2(x)$$.

Medium

Composite Function and Its Inverse

Let \(f(x)=3\cdot2^{x}\) and \(g(x)=x-1\). Consider the composite function \(h(x)=f(g(x))\). (a) Wr

Medium

Composite Function Involving Exponential and Logarithmic Components

Consider the composite function defined by $$h(x) = \log_5(2\cdot 5^x + 3)$$. Answer the following p

Extreme

Composite Functions Involving Exponential and Logarithmic Functions

Let $$f(x) = e^x$$ and $$g(x) = \ln(x)$$. Explore the compositions of these functions and their rela

Easy

Composite Functions with Exponential and Logarithmic Elements

Given the functions $$f(x)= \ln(x)$$ and $$g(x)= e^x$$, analyze their compositions.

Easy

Composition and Transformation Functions

Let $$g(x)= \log_{5}(x)$$ and $$h(x)= 5^x - 4$$.

Hard

Composition of Exponential and Log Functions

Consider the functions $$f(x)=\ln(x)$$ and $$g(x)=2*e^(x)$$.

Medium

Composition of Exponential and Logarithmic Functions

Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th

Medium

Composition of Exponential and Logarithmic Functions

Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.

Easy

Compound Interest and Exponential Equations

An investment account is compounded continuously with an initial balance of $$1000$$ and an annual i

Medium

Compound Interest Model with Regular Deposits

An account offers an annual interest rate of 5% compounded once per year. In addition to an initial

Hard

Connecting Exponential Functions with Geometric Sequences

An exponential function $$f(x) = 5 \cdot 3^x$$ can also be interpreted as a geometric sequence where

Medium

Earthquake Intensity and Logarithmic Function

The Richter scale measures earthquake intensity using a logarithmic function. Suppose the energy rel

Easy

Earthquake Intensity on the Richter Scale

The Richter scale defines earthquake magnitude as \(M = \log_{10}(I/I_{0})\), where \(I/I_{0}\) is t

Medium

Estimating Rates of Change from Table Data

A cooling object has its temperature recorded at various time intervals as shown in the table below:

Hard

Exploring Logarithmic Scales: pH and Hydrogen Ion Concentration

In chemistry, the pH of a solution is defined by the relation $$pH = -\log([H^+])$$, where $$[H^+]$$

Medium

Exponential Decay and Half-Life

A radioactive substance decays according to an exponential decay function. The substance initially w

Medium

Exponential Decay and Log Function Inverses in Pharmacokinetics

In a pharmacokinetics study, the concentration of a drug in a patient’s bloodstream is observed to d

Medium

Exponential Decay: Modeling Half-Life

A radioactive substance decays with a half-life of 5 years. At \(t = 10\) years, the mass of the sub

Hard

Exponential Function from Data Points

An exponential function of the form f(x) = a·bˣ passes through the points (2, 12) and (5, 96).

Hard

Exponential Function Transformation

An exponential function is given by $$f(x) = 2 \cdot 3^x$$. Analyze the effects of various transform

Medium

Exponential Inequality Solution

Solve the inequality $$5^(2*x - 1) < 3·5^(x)$$ for x.

Hard

Finding Terms in a Geometric Sequence

A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.

Easy

Fitting a Logarithmic Model to Sales Data

A company observes that its sales revenue (in thousands of dollars) based on advertising spend (in t

Hard

General Exponential Equation Solving

Solve the equation $$2^{x}+2^{x+1}=48$$. (a) Factor the equation by rewriting \(2^{x+1}\) in terms

Hard

Geometric Sequence Construction

Consider a geometric sequence where the first term is $$g_0 = 3$$ and the second term is $$g_1 = 6$$

Easy

Geometric Sequence in Compound Interest

An investment grows according to a geometric sequence. The initial investment is $$1000$$ dollars an

Easy

Inverse Functions of Exponential and Log Functions

Let \(f(x)=4\cdot3^{x}\) and \(g(x)=\log_{3}(x/4)\). (a) Show that \(f(g(x))=x\) for all \(x\) in t

Easy

Inverse Functions of Exponential and Logarithmic Forms

Consider the exponential function $$f(x) = 2 \cdot 3^x$$. Answer the following parts.

Medium

Inverse of an Exponential Function

Let f(x) = 5·e^(2*x) - 3. Find the inverse function f⁻¹(x) and verify your answer by composing f and

Easy

Inverse Relationship Verification

Given f(x) = 3ˣ - 4 and g(x) = log₃(x + 4), verify that g is the inverse of f.

Hard

Log-Exponential Function and Its Inverse

For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in

Extreme

Log-Exponential Hybrid Function and Its Inverse

Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,

Extreme

Logarithmic Analysis of Earthquake Intensity

The magnitude of an earthquake on the Richter scale is determined using a logarithmic function. Cons

Medium

Logarithmic Equation and Extraneous Solutions

Solve the logarithmic equation $$log₂(x - 1) + log₂(3*x + 2) = 3$$.

Hard

Logarithmic Function with Scaling and Inverse

Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver

Easy

Model Error Analysis in Exponential Function Fitting

A researcher uses the exponential model $$f(t) = 100 \cdot e^{0.05t}$$ to predict a process. At \(t

Hard

Piecewise Exponential and Logarithmic Function Discontinuities

Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,

Hard

Population Growth Modeling with Exponential Functions

A small town has its population recorded every 5 years, as shown in the table below: | Year | Popul

Medium

Profit Growth with Combined Models

A company's profit is modeled by a function that combines an arithmetic increase with exponential gr

Hard

Radioactive Decay and Half-Life Estimation Through Data

A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow

Easy

Real Estate Price Appreciation

A real estate property appreciates according to an exponential model and receives an additional fixe

Hard

Semi-Log Plot and Exponential Model

A researcher studies the concentration of a chemical over time using a semi-log plot, where the y-ax

Extreme

Semi-Log Plot Data Analysis

A set of experimental data representing bacterial concentration (in CFU/mL) over time (in days) is g

Medium

Solving Exponential Equations Using Logarithms

Solve for $$x$$ in the exponential equation $$2*3^(x)=54$$.

Easy

Solving Exponential Equations Using Logarithms

Solve the exponential equation $$5\cdot2^{(x-2)}=40$$. (a) Isolate the exponential term and solve f

Easy

Solving Logarithmic Equations and Checking Domain

An engineer is analyzing a system and obtains the following logarithmic equation: $$\log_3(x+2) + \

Hard

Solving Logarithmic Equations with Extraneous Solutions

Solve the logarithmic equation $$\log_2(x - 1) + \log_2(2x) = \log_2(10)$$ and check for any extrane

Hard

System of Exponential Equations

Solve the following system of equations: $$2\cdot 2^x + 3\cdot 3^y = 17$$ $$2^x - 3^y = 1$$.

Medium

Temperature Cooling Model

An object cooling in a room follows Newton’s Law of Cooling. The temperature of the object is modele

Medium

Temperature Decay Modeled by a Logarithmic Function

In an experiment, the temperature (in degrees Celsius) of an object decreases over time according to

Medium

Transformation Effects on Exponential Functions

Consider the function $$f(x) = 3 \cdot 2^x$$, which is transformed to $$g(x) = 3 \cdot 2^{(x+1)} - 4

Medium
Unit 3: Trigonometric and Polar Functions

Amplitude and Period Transformations

A Ferris wheel ride is modeled by a sinusoidal function. The ride has a maximum height of 75 ft and

Medium

Analysis of Reciprocal Trigonometric Functions

Examine the properties of the reciprocal trigonometric functions $$\csc(θ)$$, $$\sec(θ)$$, and $$\co

Hard

Analysis of Rose Curves

A polar curve is given by the equation $$r=4*\cos(3*θ)$$ which represents a rose curve. Analyze the

Medium

Analyzing a Rose Curve

Consider the polar equation $$r=3\,\sin(2\theta)$$.

Medium

Analyzing Phase Shifts in Sinusoidal Functions

Investigate the function $$y=\sin\Big(2*(x-\frac{\pi}{3})\Big)+0.5$$ by identifying its transformati

Medium

Analyzing the Tangent Function

Consider the tangent function $$T(x)=\tan(x)$$.

Easy

Average Rate of Change in a Polar Function

Consider the polar function $$r=f(θ)=3+2*\sin(θ)$$, which models a periodic phenomenon in polar coor

Medium

Cardioid Polar Graphs

Consider the cardioid given by the polar equation $$r=1+\cos(\theta)$$.

Medium

Composite Function Analysis with Polar and Trigonometric Elements

A radar system uses the polar function $$r(\theta)=5+2*\sin(\theta)$$ to model the distance to a tar

Medium

Concavity in the Sine Function

Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.

Medium

Conversion between Rectangular and Polar Coordinates

Given the point in rectangular coordinates $$(-3, 3\sqrt{3})$$, perform the following tasks.

Medium

Coterminal Angles and the Unit Circle

Consider the angle $$\theta = \frac{5\pi}{3}$$ given in standard position.

Medium

Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences

A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa

Hard

Daylight Hours Modeling

A city's daylight hours vary sinusoidally throughout the year. It is observed that the maximum dayli

Medium

Equivalent Representations Using Pythagorean Identity

Using trigonometric identities, answer the following:

Medium

Evaluating Inverse Trigonometric Functions

Inverse trigonometric functions such as $$\arcsin(x)$$ and $$\arccos(x)$$ have specific restricted d

Easy

Evaluating Sine and Cosine Using Special Triangles

Using knowledge of special right triangles, evaluate trigonometric functions.

Easy

Exploring Inverse Trigonometric Functions

Consider the inverse sine function $$\arcsin(x)$$, defined for \(x\in[-1,1]\).

Easy

Exploring Rates of Change in Polar Functions

Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:

Hard

Graph Interpretation from Tabulated Periodic Data

A study recorded the oscillation of a pendulum over time. Data is provided in the table below showin

Medium

Graphical Reflection of Trigonometric Functions and Their Inverses

Consider the sine function and its inverse. The graph of an inverse function is the reflection of th

Easy

Graphing and Analyzing a Transformed Sine Function

Consider the function $$f(x)=3\sin\left(2\left(x-\frac{\pi}{4}\right)\right)+1$$. Answer the followi

Medium

Graphing Polar Circles and Roses

Analyze the following polar equations: $$r=2$$ and $$r=3*\cos(2\theta)$$.

Medium

Interpreting a Sinusoidal Graph

The graph provided displays a function of the form $$g(\theta)=a\sin[b(\theta-c)]+d$$. Use the graph

Medium

Interpreting Trigonometric Data Models

A set of experimental data capturing a periodic phenomenon is given in the table below. Use these da

Medium

Inverse Trigonometric Analysis

Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from

Easy

Inverse Trigonometric Functions in Navigation

A navigation system uses inverse trigonometric functions to determine heading angles. Answer the fol

Hard

Modeling Seasonal Temperature Data with Sinusoidal Functions

A sinusoidal pattern is observed in average monthly temperatures. Refer to the provided temperature

Medium

Modeling Tidal Motion with a Sinusoidal Function

A coastal town uses the model $$h(t)=4*\sin\left(\frac{\pi}{6}*(t-2)\right)+10$$ (with $$t$$ in hour

Medium

Modeling Tidal Patterns with Sinusoidal Functions

A coastal scientist studies tide levels at a beach that vary periodically. Using collected tide data

Medium

Multiple Angle Equation

Solve the trigonometric equation $$2*\sin(2x) - \sqrt{3} = 0$$ for all $$x$$ in the interval $$[0, 2

Medium

Pendulum Motion and Periodic Phenomena

A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer

Medium

Periodic Phenomena in Weather Patterns

A city's average daily temperature over the course of a year is modeled by a sinusoidal function. Th

Medium

Periodic Temperature Variation Model

A town's temperature is modeled by the function $$T(t)=10*\cos(\frac{\pi}{12}*(t-6))+20$$, where t r

Easy

Phase Shift Analysis in Sinusoidal Functions

A sinusoidal function describing a physical process is given by $$f(\theta)=5*\sin(\theta-\phi)+2$$.

Medium

Phase Shifts and Reflections of Sine Functions

Analyze the relationship between the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\thet

Easy

Polar Coordinates Conversion

Convert the rectangular coordinate point $$(-3,\,3\sqrt{3})$$ into polar form.

Medium

Polar Coordinates Conversion

Convert between Cartesian and polar coordinates and analyze related polar equations.

Medium

Polar Function with Rate of Change Analysis

Given the polar function $$r(\theta)=2+\sin(\theta)$$, analyze its behavior.

Medium

Polar Graphs: Conversion and Analysis

Analyze the polar equation $$r=4*\cos(\theta)+3$$.

Hard

Polar Rate of Change

Consider the polar function $$r = 3 + \sin(\theta)$$.

Medium

Polar to Cartesian Conversion for a Circle

Consider the polar equation $$r=6\cos(\theta)$$.

Medium

Proof and Application of Trigonometric Sum Identities

Trigonometric sum identities are a powerful tool in analyzing periodic phenomena.

Extreme

Reciprocal Trigonometric Functions: Secant, Cosecant, and Cotangent

Consider the functions $$f(\theta)=\sec(\theta)$$, $$g(\theta)=\csc(\theta)$$, and $$h(\theta)=\cot(

Extreme

Roulette Wheel Outcomes and Angle Analysis

A casino roulette wheel is divided into 12 equal sectors. Answer the following:

Hard

Secant, Cosecant, and Cotangent Functions Analysis

Consider the reciprocal trigonometric functions. Answer the following:

Hard

Sine and Cosine Graph Transformations

Consider the functions $$f(\theta)=\sin(\theta)$$ and $$g(\theta)=\sin(\theta+\frac{\pi}{3})$$, whic

Easy

Sinusoidal Function Transformation Analysis

Analyze the sinusoidal function given by $$g(\theta)=3*\sin\left(2*(\theta-\frac{\pi}{4})\right)-1$$

Medium

Sinusoidal Function Transformations in Signal Processing

A communications engineer is analyzing a signal modeled by the sinusoidal function $$f(x)=3*\cos\Big

Medium

Solving a Trigonometric Equation with Sum and Difference Identities

Solve the equation $$\sin\left(x+\frac{\pi}{6}\right)=\cos(x)$$ for $$0\le x<2\pi$$.

Hard

Solving a Trigonometric Inequality

Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.

Hard

Solving Trigonometric Equations

Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.

Hard

Solving Trigonometric Equations in a Survey

In a survey, participants' responses are modeled using trigonometric equations. Solve the following

Easy

Special Triangles and Trigonometric Values

Utilize the properties of special triangles to evaluate trigonometric functions.

Easy

Tidal Motion Analysis

A coastal region's tidal heights are modeled by a sinusoidal function $$f(t) = A * \sin(b*(t - c)) +

Medium

Tidal Patterns and Sinusoidal Modeling

A coastal area experiences tides that follow a sinusoidal pattern described by $$T(t)=4+1.2\sin\left

Medium

Tide Height Model: Using Sine Functions

A coastal region experiences tides that follow a sinusoidal pattern. A table of tide heights (in fee

Medium

Trigonometric Identities and Sum Formulas

Trigonometric identities are important for simplifying expressions that arise in wave interference a

Easy
Unit 4: Functions Involving Parameters, Vectors, and Matrices

Analysis of a Particle's Parametric Path

A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$

Medium

Circular Motion Parametrization

Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(

Medium

Complex Parametric and Matrix Analysis in Planar Motion

A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)

Extreme

Composite Transformations in the Plane

Consider two linear transformations in $$\mathbb{R}^2$$: a rotation by 90° counterclockwise and a re

Easy

Composition of Linear Transformations

Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &

Hard

Composition of Linear Transformations

Consider two linear transformations represented by the matrices $$A= \begin{pmatrix} 1 & 2 \\ 0 & 1

Medium

Composition of Transformations and Inverses

Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{

Extreme

Determinant and Area of a Parallelogram

Given vectors $$\vec{u}=\langle 2, 3 \rangle$$ and $$\vec{v}=\langle -1, 4 \rangle$$, consider the 2

Medium

Determinant and Inverse Calculation

Given the matrix $$C = \begin{pmatrix} 4 & 7 \\ 2 & 6 \end{pmatrix}$$, answer the following:

Easy

Determinant Applications in Area Computation

Vectors $$\mathbf{u}=\langle 5,2\rangle$$ and $$\mathbf{v}=\langle 1,4\rangle$$ form adjacent sides

Easy

Discontinuity Analysis in a Function Modeling Particle Motion

A particle’s position along a line is given by the piecewise function: $$s(t)=\begin{cases} \frac{t^

Medium

Discontinuity in a Function Modeling Transition between States

A system's state is modeled by the function $$S(x)=\begin{cases} \frac{x^2-16}{x-4} & \text{if } x \

Medium

Evaluating Limits and Discontinuities in a Parameter-Dependent Function

For the function $$g(t)=\begin{cases} \frac{2*t^2 - 8}{t-2} & \text{if } t \neq 2, \\ 6 & \text{if }

Easy

Evaluating Limits in a Parametrically Defined Motion Scenario

A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \

Medium

Exponential Decay Modeled by Matrices

Consider a system where decay over time is modeled by the matrix $$M(t)= e^{-k*t}I$$, where I is the

Medium

Exponential Parametric Function and its Inverse

Consider the exponential function $$f(x)=e^{x}+2$$ defined for all real numbers. Analyze the functio

Medium

FRQ 2: Circular Motion and Parameterization

Consider a particle moving along a circular path represented by the parametric function $$f(t)=(x(t)

Medium

FRQ 3: Linear Parametric Motion - Car Journey

A car travels along a linear path described by the parametric equations $$x(t)=3+2*t$$ and $$y(t)=4-

Easy

FRQ 6: Implicit Function to Parametric Representation

Consider the implicitly defined circle $$x^2+y^2-6*x+8*y+9=0$$.

Hard

FRQ 8: Vector Analysis - Dot Product and Angle

Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th

Medium

FRQ 11: Matrix Inversion and Determinants

Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.

Medium

FRQ 13: Area Determined by a Matrix's Determinant

Vectors $$\textbf{v}=\langle4,3\rangle$$ and $$\textbf{w}=\langle-2,5\rangle$$ form a parallelogram.

Medium

FRQ 14: Linear Transformation and Rotation Matrix

Consider the rotation matrix $$R=\begin{bmatrix}\cos(t) & -\sin(t)\\ \sin(t) & \cos(t)\end{bmatrix}$

Medium

FRQ 19: Parametric Functions and Matrix Transformation

A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line

Hard

Graphical Analysis of Parametric Motion

A particle moves in the plane with its position defined by the functions $$x(t)= t^2 - 2*t$$ and $$y

Easy

Graphical and Algebraic Analysis of a Function with a Removable Discontinuity

Consider the function $$g(x)=\begin{cases} \frac{\sin(x) - \sin(0)}{x-0} & \text{if } x \neq 0, \\ 1

Easy

Inverse and Determinant of a Matrix

Let the 2×2 matrix be given by $$A= \begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}$$. Answer the follo

Easy

Inverse Matrix and Transformation of the Unit Square

Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit

Extreme

Inverse of a 2×2 Matrix

Consider the matrix $$A=\begin{bmatrix}2 & 5\\ 3 & 7\end{bmatrix}$$.

Medium

Inverses and Solving a Matrix Equation

Given the matrix $$D = \begin{pmatrix} -2 & 5 \\ 1 & 3 \end{pmatrix}$$, answer the following:

Medium

Linear Parametric Motion Modeling

A car travels along a straight path, and its position in the plane is given by the parametric equati

Easy

Linear Transformation and Area Scaling

Consider the linear transformation L on \(\mathbb{R}^2\) defined by the matrix $$A= \begin{pmatrix}

Medium

Linear Transformation and its Effect on Geometric Shapes

A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \

Easy

Linear Transformation Composition

Consider two linear transformations with matrices $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Hard

Linear Transformation Evaluation

Given the transformation matrix $$T = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$, answer the fo

Hard

Matrices as Models for Population Dynamics

A population of two species is modeled by the transition matrix $$P=\begin{pmatrix} 0.8 & 0.1 \\ 0.2

Hard

Matrices as Representations of Rotation

Consider the matrix $$A=\begin{bmatrix}0 & -1\\ 1 & 0\end{bmatrix}$$, which represents a rotation in

Easy

Matrix Applications in State Transitions

In a system representing transitions between two states, the following transition matrix is used: $

Hard

Matrix Methods for Solving Linear Systems

Solve the system of linear equations below using matrix methods: $$2x+3y=7$$ $$4x-y=5$$

Easy

Matrix Modeling of Department Transitions

A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri

Extreme

Matrix Modeling of State Transitions

In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e

Extreme

Matrix Multiplication and Properties

Let $$A=\begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ -1 & 0\end{pmat

Hard

Matrix Multiplication Exploration

Let $$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ and $$B = \begin{pmatrix} 0 & -1 \\ 5 & 2 \

Medium

Matrix Transformation of a Vector

Let the transformation matrix be $$A=\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix},$$ and let the

Medium

Modeling Linear Motion Using Parametric Equations

A car travels along a straight road. Its position in the plane is given by the parametric equations

Easy

Movement Analysis via Position Vectors

A particle is moving in the plane with its position given by the functions $$x(t)=2*t+1$$ and $$y(t)

Easy

Parametric Equations and Inverses

A curve is defined parametrically by $$x(t)=t+2$$ and $$y(t)=3*t-1$$.

Medium

Parametric Function and Its Inverse: Parabolic Function

Consider the function $$f(x)= (x-1)^2 + 2$$ for x \(\ge\) 1. (a) Provide a parametrization for the

Hard

Parametric Motion with Variable Rates

A particle moves in the plane with its motion described by $$x(t)=4*t-t^2$$ and $$y(t)=t^2-2*t$$.

Hard

Parametric Representation of a Parabola

A parabola is given by the equation $$y=x^2-2*x+1$$. A parametric representation for this parabola i

Easy

Parametrization of a Parabola

Given the explicit function $$y = 2*x^2 + 3*x - 1$$, answer the following:

Medium

Particle Motion from Parametric Equations

A particle moves in the plane with position functions $$x(t)=t^2-2*t$$ and $$y(t)=4*t-t^2$$, where $

Medium

Particle Motion Through Position and Velocity Vectors

A particle’s position is given by the vector function $$\vec{p}(t)= \langle 3*t^2 - 2*t,\, t^3 \rang

Medium

Position and Velocity in Vector-Valued Functions

A particle’s position is defined by the vector-valued function $$\vec{p}(t)=(2*t+1)\,\mathbf{i}+(3*t

Easy

Tangent Line to a Parametric Curve

Consider the parametric equations $$x(t)=t^2-3$$ and $$y(t)=2*t+1$$. (a) Compute the average rate o

Medium

Transformation Matrices in Computer Graphics

A transformation matrix $$A = \begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix}$$ is applied to points in

Medium

Transition Matrices in Dynamic Models

A system with two states is modeled by the transition matrix $$T=\begin{bmatrix}0.8 & 0.3\\ 0.2 & 0.

Hard

Vector Addition and Scalar Multiplication

Consider the vectors $$\vec{u}=\langle 1, 3 \rangle$$ and $$\vec{v}=\langle -2, 4 \rangle$$:

Medium

Vector Analysis in Projectile Motion

A soccer ball is kicked so that its velocity vector is given by $$\mathbf{v}=\langle5, 7\rangle$$ (i

Easy

Vector Operations

Given the vectors $$\mathbf{u} = \langle 3, -2 \rangle$$ and $$\mathbf{v} = \langle -1, 4 \rangle$$,

Easy

Vector Operations

Given the vectors $$u=\langle 3, -2 \rangle$$ and $$v=\langle -1, 4 \rangle$$, (a) Compute the magn

Easy

Vector-Valued Functions: Position and Velocity

A particle’s position is given by the vector-valued function $$\mathbf{p}(t)=\langle 2*t+1, t^2-3*t+

Medium

Vectors in Polar and Cartesian Coordinates

A drone's position is described in polar coordinates by $$r(t)=5+t$$ and $$\theta(t)=\frac{\pi}{6}t$

Medium

Trusted by millions

Everyone is relying on Knowt, and we never let them down.

3M +Student & teacher users
5M +Study notes created
10M + Flashcards sets created
Victoria Buendia-Serrano
Victoria Buendia-SerranoCollege freshman
Knowt’s quiz and spaced repetition features have been a lifesaver. I’m going to Columbia now and studying with Knowt helped me get there!
Val
ValCollege sophomore
Knowt has been a lifesaver! The learn features in flashcards let me find time and make studying a little more digestible.
Sam Loos
Sam Loos12th grade
I used Knowt to study for my APUSH midterm and it saved my butt! The import from Quizlet feature helped a ton too. Slayed that test with an A!! 😻😻😻

Need to review before working on AP Precalculus FRQs?

We have over 5 million resources across various exams, and subjects to refer to at any point.

Tips from Former AP Students

FAQ

We thought you might have some questions...

Where can I find practice free response questions for the AP Precalculus exam?
The free response section of each AP exam varies slightly, so you’ll definitely want to practice that before stepping into that exam room. Here are some free places to find practice FRQs :
  • Of course, make sure to run through College Board's past FRQ questions!
  • Once you’re done with those go through all the questions in the AP PrecalculusFree Response Room. You can answer the question and have it grade you against the rubric so you know exactly where to improve.
  • Reddit it also a great place to find AP free response questions that other students may have access to.
How do I practice for AP AP Precalculus Exam FRQs?
Once you’re done reviewing your study guides, find and bookmark all the free response questions you can find. The question above has some good places to look! while you’re going through them, simulate exam conditions by setting a timer that matches the time allowed on the actual exam. Time management is going to help you answer the FRQs on the real exam concisely when you’re in that time crunch.
What are some tips for AP Precalculus free response questions?
Before you start writing out your response, take a few minutes to outline the key points you want to make sure to touch on. This may seem like a waste of time, but it’s very helpful in making sure your response effectively addresses all the parts of the question. Once you do your practice free response questions, compare them to scoring guidelines and sample responses to identify areas for improvement. When you do the free response practice on the AP Precalculus Free Response Room, there’s an option to let it grade your response against the rubric and tell you exactly what you need to study more.
How do I answer AP Precalculus free-response questions?
Answering AP Precalculus free response questions the right way is all about practice! As you go through the AP AP Precalculus Free Response Room, treat it like a real exam and approach it this way so you stay calm during the actual exam. When you first see the question, take some time to process exactly what it’s asking. Make sure to also read through all the sub-parts in the question and re-read the main prompt, making sure to circle and underline any key information. This will help you allocate your time properly and also make sure you are hitting all the parts of the question. Before you answer each question, note down the key points you want to hit and evidence you want to use (where applicable). Once you have the skeleton of your response, writing it out will be quick, plus you won’t make any silly mistake in a rush and forget something important.