Ace the free response questions on your AP Precalculus exam with practice FRQs graded by Kai. Choose your subject below.
Knowt can make mistakes. Consider checking important information.
The best way to get better at FRQs is practice. Browse through dozens of practice AP Precalculus FRQs to get ready for the big day.
Analysis of a Quartic Function
Consider the quartic function $$h(x)= x^4 - 4*x^2 + 3$$. Answer the following:
Analysis of Removable Discontinuities in an Experiment
In a chemical reaction process, the rate of reaction is modeled by $$R(x)=\frac{x^2-4}{x-2}$$ for $$
Analyzing a Rational Function with Asymptotes
Consider the rational function $$R(x)= \frac{(x-2)(x+3)}{(x-1)(x+4)}$$. Answer each part that follow
Analyzing End Behavior of a Polynomial
Consider the polynomial function $$f(x) = -2*x^4 + 3*x^3 - x + 5$$.
Average Rate of Change and Tangent Lines
For the function $$f(x)= x^3 - 6*x^2 + 9*x + 4$$, consider the relationship between secant (average
Average Rate of Change in Rational Functions
Let $$h(x)= \frac{3}{x-1}$$ represent the speed (in km/h) of a vehicle as a function of a variable x
Binomial Theorem Expansion
Use the Binomial Theorem to expand the expression $$ (x + 2)^4 $$. Explain your steps in detail.
Carrying Capacity in Population Models
A rational function $$P(t) = \frac{50*t}{t + 10}$$ is used to model a population approaching its car
Comparative Analysis of Polynomial and Rational Functions
A function is defined piecewise by $$ f(x)=\begin{cases} x^2-4 & \text{if } x\le2, \\ \frac{x^2-4}{x
Complex Zeros and Conjugate Pairs
Consider the polynomial $$p(x)= x^4 + 4*x^3 + 8*x^2 + 8*x + 4$$. Answer the following parts.
Composite Function Transformations
Consider the polynomial function $$f(x)= x^2-4$$. A new function is defined by $$g(x)= \ln(|f(x)+5|)
Concavity and Inflection Points of a Polynomial Function
For the function $$g(x)= x^3 - 3*x^2 - 9*x + 5$$, analyze the concavity and determine any inflection
Continuous Piecewise Function Modification
A company models its profit $$P(x)$$ (in thousands of dollars) with the piecewise function: $$ P(x)=
Degree Determination from Finite Differences
A researcher records the size of a bacterial colony at equal time intervals, obtaining the following
Discontinuity Analysis in a Rational Function with High Degree
Consider the function $$f(x)=\frac{x^3-8}{x^2-4}$$. Answer the following:
End Behavior of a Quartic Polynomial
Consider the quartic polynomial function $$f(x) = -3*x^4 + 5*x^3 - 2*x^2 + x - 7$$. Analyze the end
Engineering Application: Stress Analysis Model
In a stress testing experiment, the stress $$S(x)$$ on a component (in appropriate units) is modeled
Evaluating Limits and Discontinuities in a Rational Function
Consider the rational function $$f(x)=\frac{x^2-4}{x-2}$$, which is defined for all real $$x$$ excep
Evaluating Limits Involving Rational Expressions with Asymptotic Behavior
Consider the function $$f(x)=\frac{2*x^2-3*x-5}{x^2-1}$$. Answer the following:
Exploring the Effect of Multiplicities on Graph Behavior
Consider the polynomial function $$q(x)= (x-1)^3*(x+2)^2$$.
Exponential Equations and Logarithm Applications in Decay Models
A radioactive substance decays according to the model $$A(t)= A_0*e^{-0.3*t}$$. A researcher analyze
Function Model Construction from Data Set
A data set shows how a quantity V changes over time t as follows: | Time (t) | Value (V) | |-------
Function Simplification and Graph Analysis
Consider the function $$h(x)= \frac{x^2 - 4}{x-2}$$. Answer the following parts.
Function Transformations and Parent Functions
The parent function is $$f(x)= x^2$$. Consider the transformed function $$g(x)= -3*(x-4)^2 + 5$$. An
Impact of Multiplicity on Graph Behavior
Consider the function $$f(x)= (x - 2)^2*(x + 1)$$. Examine how the multiplicity of each zero affects
Intersection of Functions in Supply and Demand
Consider two functions that model supply and demand in a market. The supply function is given by $$f
Inversion of a Polynomial Ratio Function
Consider the function $$f(x)=\frac{x^2-1}{x+2}$$. Answer the following questions regarding its inver
Investigation of Refund Policy via Piecewise Continuous Functions
A retail store's refund policy is modeled by $$ R(x)=\begin{cases} 10-x & \text{for } x<5, \\ a*x+b
Logarithmic and Exponential Equations with Rational Functions
A process is modeled by the function $$F(x)= \frac{3*e^{2*x} - 5}{e^{2*x}+1}$$, where x is measured
Modeling Inverse Variation with Rational Functions
An experiment shows that the intensity of a light source varies inversely with the square of the dis
Modeling with a Polynomial Function: Optimization
A company’s profit (in thousands of dollars) is modeled by the polynomial function $$P(x)= -2*x^3+12
Modeling with Inverse Variation: A Rational Function
A physics experiment models the intensity $$I$$ of light as inversely proportional to the square of
Modeling with Rational Functions
A chemist models the concentration of a reactant over time with the rational function $$C(t)= \frac{
Office Space Cubic Function Optimization
An office building’s usable volume (in thousands of cubic feet) is modeled by the cubic function $$V
Parameter Identification in a Rational Function Model
A rational function modeling a certain phenomenon is given by $$r(x)= \frac{k*(x - 2)}{x+3}$$, where
Piecewise Function without a Calculator
Let the function $$f(x)=\begin{cases} x^2-1 & \text{for } x<2, \\ \frac{x^2-4}{x-2} & \text{for } x\
Polynomial End Behavior and Zeros Analysis
A polynomial function is given by $$f(x)= 2*x^4 - 3*x^3 - 12*x^2$$. This function models a physical
Polynomial Long Division and Slant Asymptote
Consider the rational function $$F(x)= \frac{x^3 + 2*x^2 - 5*x + 1}{x - 2}$$. Answer the following p
Polynomial Model Construction and Interpretation
A company’s profit (in thousands of dollars) over time t (in months) is modeled by the quadratic fun
Polynomial Model from Temperature Data
A researcher records the ambient temperature over time and obtains the following data: | Time (hr)
Polynomial Transformation Challenge
Consider the function transformation given by $$g(x)= -2*(x+1)^3 + 3$$. Answer each part that follow
Projectile Motion Analysis
A projectile is launched so that its height (in meters) as a function of time (in seconds) is given
Rate of Change in a Quadratic Function
Consider the quadratic function $$f(x)= 2*x^2 - 4*x + 1$$. Answer the following parts regarding its
Rational Function Asymptotes and Holes
Consider the rational function $$r(x)=\frac{x^2 - 4}{x^2 - x - 6}$$. Analyze the function according
Rational Function Asymptotes and Holes
A machine’s efficiency is modeled by the rational function $$R(x)= \frac{x^2 - 4}{x^2 - x - 6}$$, wh
Rational Inequalities Analysis
Solve the inequality $$\frac{x^2-4}{x+1} \ge 0$$ and represent the solution on a number line.
Return to a Rational Expression under Transformation
Consider the function $$f(x)=\frac{(x-2)(x+3)}{(x-2)(x-5)}$$, defined for $$x\neq2,5$$. Answer the f
Solving a Polynomial Inequality
Solve the inequality $$x^3 - 4*x^2 + x + 6 \ge 0$$ and justify your solution.
Solving a System of Equations: Polynomial vs. Rational
Consider the system of equations where $$f(x)= x^2 - 1$$ and $$g(x)= \frac{2*x}{x+2}$$. Answer the f
Zeros and Complex Conjugates in Polynomial Functions
A polynomial function of degree 4 is known to have real zeros at $$x=1$$ and $$x=-2$$, and two non-r
Zeros and End Behavior in a Higher-Degree Polynomial
Consider the polynomial $$P(x)= (x+1)^2 (x-2)^3 (x-5)$$. Answer the following parts.
Analyzing a Logarithmic Function
Consider the logarithmic function $$f(x)= \log_{3}(x-2) + 1$$.
Analyzing a Logarithmic Function from Data
A scientist proposes a logarithmic model for a process given by $$f(x)= \log_2(x) + 1$$. The observe
Analyzing Exponential Function Behavior from a Graph
An exponential function is depicted in the graph provided. Analyze the key features of the function.
Arithmetic Savings Plan
A person decides to save money every month, starting with an initial deposit of $$50$$ dollars, with
Arithmetic Sequence Analysis
An arithmetic sequence is defined as an ordered list of numbers with a constant difference between c
Arithmetic Sequence Derived from Logarithms
Consider the exponential function $$f(x) = 10 \cdot 2^x$$. A new dataset is formed by taking the com
Bacterial Growth Model
In a laboratory experiment, a bacteria colony doubles every 3 hours. The initial count is $$500$$ ba
Bacterial Growth Modeling
A biologist is studying a rapidly growing bacterial culture. The number of bacteria at time $$t$$ (i
Comparing Arithmetic and Exponential Models in Population Growth
Two neighboring communities display different population growth patterns. Community A increases by a
Comparing Linear and Exponential Growth Models
A company is analyzing its profit growth using two distinct models: an arithmetic model given by $$P
Competing Exponential Cooling Models
Two models are proposed for the cooling of an object. Model A is $$T_A(t) = T_env + 30·e^(-0.5*t)$$
Composite Exponential-Logarithmic Functions
Let f(x) = log₃(x) and g(x) = 2·3ˣ. Analyze the following compositions.
Composite Function Analysis: Identity and Inverses
Let $$f(x)= 2^x$$ and $$g(x)= \log_2(x)$$.
Composite Functions Involving Exponential and Logarithmic Functions
Let $$f(x) = e^x$$ and $$g(x) = \ln(x)$$. Explore the compositions of these functions and their rela
Composite Functions: Shifting and Scaling in Log and Exp
Consider the functions $$f(x)=2*e^(x-3)$$ and $$g(x)=\ln(x)+4$$.
Composite Sequences: Combining Geometric and Arithmetic Models in Production
A factory’s monthly production is influenced by two factors. There is a fixed increase in production
Composition of Exponential and Log Functions
Consider the functions $$f(x)=\ln(x)$$ and $$g(x)=2*e^(x)$$.
Composition of Exponential and Logarithmic Functions
Consider the functions $$f(x)= \log_5\left(\frac{x}{2}\right)$$ and $$g(x)= 10\cdot 5^x$$. Answer th
Composition of Exponential and Logarithmic Functions
Given two functions: $$f(x) = 3 \cdot 2^x$$ and $$g(x) = \log_2(x)$$, answer the following parts.
Compound Interest and Financial Growth
An investment account earns compound interest annually. An initial deposit of $$P = 1000$$ dollars i
Compound Interest with Periodic Deposits
An investor opens an account with an initial deposit of $$5000$$ dollars and adds an additional $$50
Data Modeling: Exponential vs. Linear Models
A scientist collected data on the growth of a substance over time. The table below shows the measure
Earthquake Intensity and Logarithmic Function
The Richter scale measures earthquake intensity using a logarithmic function. Suppose the energy rel
Earthquake Intensity on the Richter Scale
The Richter scale defines earthquake magnitude as \(M = \log_{10}(I/I_{0})\), where \(I/I_{0}\) is t
Earthquake Magnitude and Logarithms
The Richter scale is logarithmic and is used to measure earthquake intensity. The energy released, \
Experimental Data Modeling Using Semi-Log Plots
A set of experimental data regarding chemical concentration is given in the table below. The concent
Exploring Logarithmic Scales: pH and Hydrogen Ion Concentration
In chemistry, the pH of a solution is defined by the relation $$pH = -\log([H^+])$$, where $$[H^+]$$
Exploring the Properties of Exponential Functions
Analyze the exponential function $$f(x)= 4 * 2^x$$.
Exponential Decay and Log Function Inverses in Pharmacokinetics
In a pharmacokinetics study, the concentration of a drug in a patient’s bloodstream is observed to d
Exponential Decay in Pollution Reduction
The concentration of a pollutant in a lake decreases exponentially according to the model $$f(t)= a\
Exponential Equations via Logarithms
Solve the exponential equation $$3 * 2^(2*x) = 6^(x+1)$$.
Exponential Function from Data Points
An exponential function of the form f(x) = a·bˣ passes through the points (2, 12) and (5, 96).
Exponential Function Transformations
Consider an exponential function defined by f(x) = a·bˣ. A graph of this function is provided in the
Exponential Inequalities
Solve the inequality $$3 \cdot 2^x \le 48$$.
Finding Terms in a Geometric Sequence
A geometric sequence is known to satisfy $$g_3=16$$ and $$g_7=256$$.
Fractal Pattern Growth
A fractal pattern is generated such that after its initial creation, each iteration adds an area tha
Graphical Analysis of Inverse Functions
Given the exponential function f(x) = 2ˣ + 3, analyze its inverse function.
Inverse of a Composite Function
Let $$f(x)= e^x$$ and $$g(x)= \ln(x) + 3$$.
Inverse of an Exponential Function
Given the exponential function $$f(x) = 5 \cdot 2^x$$, determine its inverse.
Inverse Relationships in Exponential and Logarithmic Functions
Consider the functions \(f(x)=2^{(x-1)}+3\) and \(g(x)=\log_{2}(x-3)+1\). (a) Discuss under what co
Investment Growth via Sequences
A financial planner is analyzing two different investment strategies starting with an initial deposi
Log-Exponential Function and Its Inverse
For the function $$f(x)=\log_2(3^(x)-5)$$, determine the domain, prove it is one-to-one, find its in
Log-Exponential Hybrid Function and Its Inverse
Consider the function $$f(x)=\log_3(8*3^(x)-5)$$. Analyze its domain, prove its one-to-one property,
Logarithmic Analysis of Earthquake Intensity
The magnitude of an earthquake on the Richter scale is determined using a logarithmic function. Cons
Logarithmic Function Analysis
Consider the logarithmic function $$f(x) = 3 + 2·log₅(x - 1)$$.
Logarithmic Function with Scaling and Inverse
Consider the function $$f(x)=\frac{1}{2}\log_{10}(x+4)+3$$. Analyze its monotonicity, find the inver
Model Error Analysis in Exponential Function Fitting
A researcher uses the exponential model $$f(t) = 100 \cdot e^{0.05t}$$ to predict a process. At \(t
Model Validation and Error Analysis in Exponential Trends
During a chemical reaction, a set of experimental data appears to follow an exponential trend when p
Piecewise Exponential and Logarithmic Function Discontinuities
Consider the function defined by $$ f(x)=\begin{cases} 2^x + 1, & x < 3,\\ 5, & x = 3,
Population Demographics Model
A small town’s population (measured in hundreds) is recorded over several time intervals. The data i
Population Growth Modeling with Exponential Functions
A small town has its population recorded every 5 years, as shown in the table below: | Year | Popul
Population Growth with an Immigration Factor
A city's population is modeled by an equation that combines exponential growth with a constant linea
Profit Growth with Combined Models
A company's profit is modeled by a function that combines an arithmetic increase with exponential gr
Radioactive Decay and Half-Life Estimation Through Data
A radioactive substance decays exponentially according to the function $$f(t)= a * b^t$$. The follow
Radioactive Decay Model
A radioactive substance decays according to the function $$f(t)= a \cdot e^{-kt}$$. In an experiment
Radioactive Decay Modeling
A radioactive substance decays with a half-life of $$5$$ years. A sample has an initial mass of $$80
Radioactive Decay Problem
A radioactive substance decays exponentially with a half-life of 5 years and an initial mass of $$20
Semi-Log Plot and Exponential Model
A researcher studies the concentration of a chemical over time using a semi-log plot, where the y-ax
Shifted Exponential Function Analysis
Consider the exponential function $$f(x) = 4e^x$$. A transformed function is defined by $$g(x) = 4e^
Shifted Exponential Function and Its Inverse
Consider the function $$f(x)=7-4*2^(x-3)$$. Determine its one-to-one nature, find its inverse functi
Solving Logarithmic Equations and Checking Domain
An engineer is analyzing a system and obtains the following logarithmic equation: $$\log_3(x+2) + \
Solving Logarithmic Equations with Extraneous Solutions
Solve the logarithmic equation $$\log_2(x - 1) + \log_2(2x) = \log_2(10)$$ and check for any extrane
Telephone Call Data Analysis on Semi-Log Plot
A telecommunications company records the number of calls received each hour. The data suggest an exp
Temperature Decay Modeled by a Logarithmic Function
In an experiment, the temperature (in degrees Celsius) of an object decreases over time according to
Transformation of an Exponential Function
Consider the basic exponential function $$f(x)= 2^x$$. A transformed function is given by $$g(x)= 3\
Transformations in Logarithmic Functions
Given \(f(x)=\log_{3}(x)\), consider the transformed function \(g(x)=-2\log_{3}(2x-6)+4\). (a) Dete
Transformations of Exponential Functions
Consider the base exponential function $$f(x)= 3 \cdot 2^x$$. A transformed function is defined by
Transformations of Exponential Functions
Consider the exponential function $$f(x)= 7 * e^{0.3x}$$. Investigate its transformations.
Translated Exponential Function and Its Inverse
Consider the function $$f(x)=5*2^(x+3)-8$$. Analyze its properties by confirming its one-to-one natu
Traveling Sales Discount Sequence
A traveling salesman offers discounts on his products following a geometric sequence. The initial pr
Tumor Growth with Time Dilation Effects
A medical researcher is studying the growth of a tumor, which is modeled by the exponential function
Wildlife Population Decline
A wildlife population declines by 15% each year, forming a geometric sequence.
Analysis of a Limacon
Consider the polar function $$r(\theta) = 2 + 3*\cos(\theta)$$.
Calculating the Area Enclosed by a Polar Curve
Consider the polar curve $$r=2*\cos(θ)$$. Without performing any integral calculations, use symmetry
Comparing Sinusoidal Function Models
Two models for daily illumination intensity are given by: $$I_1(t)=6*\sin\left(\frac{\pi}{12}(t-4)\r
Concavity in the Sine Function
Consider the function $$h(x) = \sin(x)$$ defined on the interval $$[0, 2\pi]$$.
Conversion between Rectangular and Polar Coordinates
Given the point in rectangular coordinates $$(-3, 3\sqrt{3})$$, perform the following tasks.
Conversion Between Rectangular and Polar Coordinates
Convert the given points between rectangular and polar coordinate systems and discuss the relationsh
Conversion Between Rectangular and Polar Coordinates
A point A in the Cartesian plane is given by $$(-3, 3\sqrt{3})$$.
Coordinate Conversion
Convert the point $$(-\sqrt{3}, 1)$$ from rectangular coordinates to polar coordinates, and then con
Coterminal Angles and the Unit Circle
Consider the angle $$\theta = \frac{5\pi}{3}$$ given in standard position.
Coterminal Angles and Trigonometric Evaluations
Consider the angle $$750^\circ$$. Using properties of coterminal angles and the unit circle, answer
Daily Temperature Fluctuations
The table below shows the recorded temperature (in $$^{\circ}\text{F}$$) at various times during the
Damped Oscillations: Combining Sinusoidal Functions and Geometric Sequences
A mass-spring system oscillates with decreasing amplitude following a geometric sequence. Its displa
Equivalent Representations Using Pythagorean Identity
Using trigonometric identities, answer the following:
Evaluating Inverse Trigonometric Functions
Inverse trigonometric functions such as $$\arcsin(x)$$ and $$\arccos(x)$$ have specific restricted d
Evaluating Sine and Cosine Using Special Triangles
Using knowledge of special right triangles, evaluate trigonometric functions.
Evaluating Sine and Cosine Values Using Special Triangles
Using the properties of special triangles, answer the following:
Exploring Rates of Change in Polar Functions
Given the polar function $$r(\theta) = 2 + \sin(\theta)$$, answer the following:
Graph Analysis of a Polar Function
The polar function $$r=4+3\sin(\theta)$$ is given, with the following data: | \(\theta\) (radians)
Graph Transformations of Sinusoidal Functions
Consider the sinusoidal function $$f(x) = 3*\sin\Bigl(2*(x - \frac{\pi}{4})\Bigr) - 1$$.
Graphing a Limacon
Given the polar equation $$r=2+3*\cos(\theta)$$, analyze and graph the corresponding limacon.
Graphing a Transformed Sine Function
Analyze the function $$f(x)=3\,\sin\Bigl(2\bigl(x-\frac{\pi}{4}\bigr)\Bigr)-1$$ which is obtained fr
Graphing and Transforming a Function and Its Inverse
Examine the function $$f(x)=\cos(x)$$ defined on the interval $$[0,\pi]$$ and its inverse.
Graphing Sine and Cosine Functions from the Unit Circle
Using information from special right triangles, answer the following:
Graphing the Tangent Function and Analyzing Asymptotes
Consider the function $$y = \tan(x)$$. Answer the following:
Graphing the Tangent Function with Asymptotes
Consider the transformed tangent function $$g(\theta)=\tan(\theta-\frac{\pi}{4})$$.
Inverse Function Analysis
Given the function $$f(\theta)=2*\sin(\theta)+1$$, analyze its invertibility and determine its inver
Inverse Trigonometric Analysis
Consider the inverse sine function $$y = \arcsin(x)$$ which is used to determine angle measures from
Modeling a Ferris Wheel's Motion Using Sinusoidal Functions
A Ferris wheel with a diameter of 10 meters rotates at a constant speed. The lowest point of the rid
Modeling Daylight Hours with a Sinusoidal Function
A city's daylight hours throughout the year are periodic. At t = 0 months, the city experiences maxi
Modeling Tidal Heights with Periodic Data
An oceanographer records tidal heights (in meters) over a 6-hour period. The following table gives t
Modeling Tides with Sinusoidal Functions
Tidal heights at a coastal location are modeled by the function $$H(t)=2\,\sin\Bigl(\frac{\pi}{6}(t-
Pendulum Motion and Periodic Phenomena
A pendulum's angular displacement from the vertical is observed to follow a periodic pattern. Refer
Period Detection and Frequency Analysis
An engineer analyzes a signal modeled by $$P(t)=6*\cos(5*(t-1))$$.
Periodic Phenomena: Seasonal Daylight Variation
A scientist is studying the variation in daylight hours over the course of a year in a northern regi
Piecewise Trigonometric Function and Continuity Analysis
Consider the piecewise defined function $$f(\theta)=\begin{cases}\frac{\sin(\theta)}{\theta} & ,\ \t
Polar Coordinates Conversion
Convert between Cartesian and polar coordinates and analyze related polar equations.
Polar Coordinates: Converting and Graphing
Given the rectangular coordinate point $$(3, -3\sqrt{3})$$, convert and analyze its polar representa
Polar Interpretation of Periodic Phenomena
A meteorologist models wind speed variations with direction over time using a polar function of the
Polar Rate of Change
Consider the polar function $$r = 3 + \sin(\theta)$$.
Polar Rose Analysis
Analyze the polar equation $$r = 2*\cos(3\theta)$$.
Polar to Cartesian Conversion for a Circle
Consider the polar equation $$r=6\cos(\theta)$$.
Probability and Trigonometry: Dartboard Game
A circular dartboard is divided into three regions by drawing two radii, forming sectors. One region
Rose Curve in Polar Coordinates
The polar function $$r(\theta) = 4*\cos(3*\theta)$$ represents a rose curve.
Roses and Limacons in Polar Graphs
Consider the polar curves described below and answer the following:
Secant Function and Its Transformations
Investigate the function $$f(\theta)=\sec(\theta)$$ and the transformation $$h(\theta)=2*\sec(\theta
Secant, Cosecant, and Cotangent Functions Analysis
Consider the reciprocal trigonometric functions. Answer the following:
Solving a Basic Trigonometric Equation
Solve the trigonometric equation $$2\cos(x)-1=0$$ for $$0 \le x < 2\pi$$.
Solving a System Involving Exponential and Trigonometric Functions
Consider the system of equations: $$ \begin{aligned} f(x)&=e^{-x}+\sin(x)=1, \\ g(x)&=\ln(2-x)+\co
Solving a Trigonometric Equation
Solve the trigonometric equation $$2*\cos(\theta) - 1 = 0$$ for $$\theta$$ in the interval $$[0, 2\p
Solving a Trigonometric Equation with Sum and Difference Identities
Solve the equation $$\sin\left(x+\frac{\pi}{6}\right)=\cos(x)$$ for $$0\le x<2\pi$$.
Solving a Trigonometric Inequality
Solve the inequality $$\sin(x) > \frac{1}{2}$$ for $$x$$ in the interval $$[0, 2\pi]$$.
Solving a Trigonometric Inequality
Solve the inequality $$\sin(x)>\frac{1}{2}$$ for \(0\le x<2\pi\).
Solving Trigonometric Equations
Solve the trigonometric equation $$\sin(\theta) + \sqrt{3}*\cos(\theta)=1$$.
Solving Trigonometric Equations in a Specified Interval
Solve the given trigonometric equations within specified intervals and explain the underlying reason
Special Triangles and Trigonometric Values
Utilize the properties of special triangles to evaluate trigonometric functions.
Tangent and Cotangent Equation
Consider the trigonometric equation $$\tan(x) - \cot(x) = 0$$ for $$x$$ in the interval $$[0, 2\pi]$
Tangent Function and Asymptotes
Examine the function $$f(\theta)=\tan(\theta)$$ defined on the interval $$\left(-\frac{\pi}{2}, \fra
Tangent Function Shift
Consider the function $$f(x) = \tan\left(x - \frac{\pi}{6}\right)$$.
Tidal Motion Analysis
A coastal region's tidal heights are modeled by a sinusoidal function $$f(t) = A * \sin(b*(t - c)) +
Tide Height Model: Using Sine Functions
A coastal region experiences tides that follow a sinusoidal pattern. A table of tide heights (in fee
Understanding Coterminal Angles Through Art Installation
An artist designing a circular mural plans to use repeating motifs based on angles. Answer the follo
Using Trigonometric Sum and Difference Identities
Prove the identity $$\sin(x+y)=\sin(x)\cos(y)+\cos(x)\sin(y)$$ and apply it.
Verifying a Trigonometric Identity
Demonstrate that the identity $$\sin^2(x)+\cos^2(x)=1$$ holds for all real numbers \(x\).
Vibration Analysis
A mechanical system oscillates with displacement given by $$d(t) = 5*\cos(4t - \frac{\pi}{3})$$ (in
Acceleration in a Vector-Valued Function
Given the particle's position vector $$\mathbf{r}(t) = \langle t^2, t^3 - 3*t \rangle$$, answer the
Analysis of a Particle's Parametric Path
A particle moves in the plane with parametric equations $$x(t)=t^2 - 3*t + 2$$ and $$y(t)=4*t - t^2$
Analysis of a Vector-Valued Position Function
Consider the vector-valued function $$\mathbf{p}(t) = \langle 2*t + 1, 3*t - 2 \rangle$$ representin
Analysis of Vector Directions and Transformations
Given the vectors $$\mathbf{a}=\langle -1,2\rangle$$ and $$\mathbf{b}=\langle 4,3\rangle$$, perform
Analyzing the Composition of Two Matrix Transformations
Let matrices be given by $$A=\begin{pmatrix}1 & 2\\0 & 1\end{pmatrix}$$ and $$B=\begin{pmatrix}2 & 0
Area of a Parallelogram Using Determinants
Given the vectors $$u=\langle 3, 5 \rangle$$ and $$v=\langle -2, 4 \rangle$$: (a) Write the 2×2 mat
Circular Motion Parametrization
Consider a particle moving along a circular path defined by the parametric equations $$x(t)= 5*\cos(
Complex Parametric and Matrix Analysis in Planar Motion
A particle moves in the plane according to the parametric equations $$x(t)=3\cos(t)+2*t$$ and $$y(t)
Composite Functions Involving Parametric and Matrix Transformations
A particle’s motion is initially modeled by the parametric function $$f(t)= \langle e^{0.1*t}, \ln(t
Composition of Linear Transformations
Given matrices $$A=\begin{pmatrix}2 & 0 \\ 0 & 3\end{pmatrix}$$ and $$B=\begin{pmatrix}0 & 1 \\ 1 &
Composition of Transformations and Inverses
Let $$A=\begin{bmatrix}2 & 3\\ 1 & 4\end{bmatrix}$$ and consider the linear transformation $$L(\vec{
Determinant and Area of a Parallelogram
Given vectors $$\vec{u}=\langle 2, 3 \rangle$$ and $$\vec{v}=\langle -1, 4 \rangle$$, consider the 2
Evaluating Limits in a Parametrically Defined Motion Scenario
A particle’s motion is given by the parametric equations: $$x(t)=\begin{cases} \frac{t^2-9}{t-3} & \
Exponential Decay Modeled by Matrices
Consider a system where decay over time is modeled by the matrix $$M(t)= e^{-k*t}I$$, where I is the
Exponential Parametric Function and its Inverse
Consider the exponential function $$f(x)=e^{x}+2$$ defined for all real numbers. Analyze the functio
Ferris Wheel Motion
A Ferris wheel rotates counterclockwise with a center at $$ (2, 3) $$ and a radius of $$5$$. The whe
Finding Angle Between Vectors
Given vectors $$\mathbf{a}=\langle 1,2 \rangle$$ and $$\mathbf{b}=\langle 3,4 \rangle$$, determine t
FRQ 2: Circular Motion and Parameterization
Consider a particle moving along a circular path represented by the parametric function $$f(t)=(x(t)
FRQ 3: Linear Parametric Motion - Car Journey
A car travels along a linear path described by the parametric equations $$x(t)=3+2*t$$ and $$y(t)=4-
FRQ 6: Implicit Function to Parametric Representation
Consider the implicitly defined circle $$x^2+y^2-6*x+8*y+9=0$$.
FRQ 8: Vector Analysis - Dot Product and Angle
Given the vectors $$\textbf{u}=\langle3,4\rangle$$ and $$\textbf{v}=\langle-2,5\rangle$$, analyze th
FRQ 11: Matrix Inversion and Determinants
Let matrix $$A=\begin{bmatrix}3 & 4\\2 & -1\end{bmatrix}$$.
FRQ 19: Parametric Functions and Matrix Transformation
A particle's motion is given by the parametric equations $$f(t)=(t, t^2)$$ for $$t\in[0,2]$$. A line
FRQ 20: Advanced Parametric and Matrix Modeling
A particle moves according to $$f(t)=(3*\cos(t)-t, 3*\sin(t)+2)$$ for time t. A transformation is ap
Implicitly Defined Circle
Consider the implicitly defined function given by $$x^2+y^2=16$$, which represents a circle.
Inverse Analysis of a Quadratic Function
Consider the function $$f(x)=x^2-4$$ defined for $$x\geq0$$. Analyze the function and its inverse.
Inverse Analysis of a Rational Function
Consider the function $$f(x)=\frac{2*x+3}{x-1}$$. Analyze the properties of this function and its in
Inverse and Determinant of a Matrix
Consider the matrix $$A=\begin{pmatrix}4 & 3 \\ 2 & 1\end{pmatrix}$$.
Inverse Function and Transformation Mapping
Given the function $$f(x)=\frac{x+2}{3}$$, analyze its invertibility and the relationship between th
Inverse Matrix and Transformation of the Unit Square
Given the transformation matrix $$A=\begin{pmatrix}3 & 1 \\ 2 & 2\end{pmatrix}$$ applied to the unit
Inverse Matrix with a Parameter
Consider the 2×2 matrix $$A=\begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}.$$ (a) Express the deter
Investigating a Rational Piecewise Function with a Jump Discontinuity
Let $$f(x)=\begin{cases} \frac{x^2 - 4x + 3}{x-1} & \text{if } x < 3, \\ 2x - 1 & \text{if } x \geq
Linear Transformation and its Effect on Geometric Shapes
A linear transformation in \(\mathbb{R}^2\) is represented by the matrix $$M=\begin{pmatrix} 2 & 0 \
Linear Transformation Composition
Consider two linear transformations with matrices $$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
Linear Transformation Evaluation
Given the transformation matrix $$T = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$, answer the fo
Matrices as Models for Population Dynamics
A population of two species is modeled by the transition matrix $$P=\begin{pmatrix} 0.8 & 0.1 \\ 0.2
Matrix Methods for Solving Linear Systems
Solve the system of linear equations below using matrix methods: $$2x+3y=7$$ $$4x-y=5$$
Matrix Modeling of Department Transitions
A company’s employee transitions between two departments are modeled by the matrix $$M=\begin{pmatri
Matrix Modeling of State Transitions
In a two-state system, the transition matrix is given by $$T=\begin{pmatrix}0.8 & 0.2 \\ 0.3 & 0.7\e
Matrix Multiplication and Linear Transformations
Consider the matrices $$A= \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$ and $$B= \begin{pmatrix}
Matrix Transformation in Graphics
In computer graphics, images are often transformed using matrices. Consider the transformation matri
Modeling Discontinuities in a Function Representing Planar Motion
A car's horizontal motion is modeled by the function $$x(t)=\begin{cases} \frac{t^2-1}{t-1} & \text{
Modeling Linear Motion Using Parametric Equations
A car travels along a straight road. Its position in the plane is given by the parametric equations
Modeling Particle Trajectory with Parametric Equations
A particle’s motion is described by the parametric equations $$x(t)=3*t+1$$ and $$y(t)=-2*t^2+8*t-1$
Movement Analysis via Position Vectors
A particle is moving in the plane with its position given by the functions $$x(t)=2*t+1$$ and $$y(t)
Parameter Transition in a Piecewise-Defined Function
Consider the function $$g(t)=\begin{cases} \frac{t^3-1}{t-1} & \text{if } t \neq 1, \\ 5 & \text{if
Parametric Curve with Logarithmic and Exponential Components
A curve is described by the parametric equations $$x(t)= t + \ln(t)$$ and $$y(t)= e^{t} - 3$$ for t
Parametric Equations of an Ellipse
Consider the ellipse defined by $$\frac{x^2}{9} + \frac{y^2}{4} = 1$$. Answer the following:
Parametric Table and Graph Analysis
Consider the parametric function $$f(t)= (x(t), y(t))$$ where $$x(t)= t^2$$ and $$y(t)= 2*t$$ for $$
Parametrization of an Ellipse
Consider the ellipse defined by $$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$$. Answer the following:
Particle Motion from Parametric Equations
A particle moves in the plane with position functions $$x(t)=t^2-2*t$$ and $$y(t)=4*t-t^2$$, where $
Planar Motion Analysis
A particle moves in the plane with parametric functions $$x(t)= 3*t - t^2$$ and $$y(t)= 4*t - 2*t^2$
Position and Velocity in Vector-Valued Functions
A particle’s position is defined by the vector-valued function $$\vec{p}(t)=(2*t+1)\,\mathbf{i}+(3*t
Position and Velocity Vectors
For a particle with position $$\mathbf{p}(t)=\langle2*t+1, 3*t-2\rangle$$, where $$t$$ is in seconds
Projectile Motion: Parabolic Path
A projectile is launched so that its motion is modeled by the parametric equations $$x(t)=t$$ and $
Rational Piecewise Function with Parameter Changes: Discontinuity Analysis
Let $$R(t)=\begin{cases} \frac{3t^2-12}{t-2} & \text{if } t\neq2, \\ 5 & \text{if } t=2 \end{cases}$
Reflection Transformation Using Matrices
A reflection over the line \(y=x\) in the plane can be represented by the matrix $$R=\begin{pmatrix}
Tangent Line to a Parametric Curve
Consider the parametric equations $$x(t)=t^2-3$$ and $$y(t)=2*t+1$$. (a) Compute the average rate o
Transition from Parametric to Explicit Function
A curve is defined by the parametric equations $$x(t)=\ln(t)$$ and $$y(t)=t+1$$, where $$t>0$$. Answ
Transition Matrix in Markov Chains
A system transitions between two states according to the matrix $$M= \begin{pmatrix} 0.7 & 0.3 \\ 0.
Vector Components and Magnitude
Given the vector $$\vec{v}=\langle 3, -4 \rangle$$:
Vector Operations in the Plane
Let $$\vec{u}= \langle 3, -2 \rangle$$ and $$\vec{v}= \langle -1, 4 \rangle$$. Perform the following
Vectors in the Context of Physics
A force vector applied to an object is given by $$\vec{F}=\langle 5, -7 \rangle$$ and the displaceme
Everyone is relying on Knowt, and we never let them down.
We have over 5 million resources across various exams, and subjects to refer to at any point.
We’ve found the best flashcards & notes on Knowt.